Abstract:
Disclosed are a semiconductor memory device, a controller, and a memory system. The semiconductor memory device includes a memory cell array including a plurality of memory cells, and an error correcting code (ECC) decoder configured to receive first data and a parity output from selected memory cells of the memory cell array. The ECC decoder generates a syndrome based on the first data and the parity, generates a decoding status flag (DSF) indicating a type of an error of the first data by the syndrome, and outputs the second data and the DSF to an external device outside of the semiconductor memory device when a read operation of the semiconductor memory device is performed.
Abstract:
An electronic device includes a foldable housing including a first surface, a second surface, and a side surface surrounding a portion of a space between the first surface and the second surface, and a speaker disposed inside the housing. The housing further includes a hinge unit, a first speaker hole formed in a partial area of the side surface, which is adjacent to the speaker, and a second speaker hole formed in a partial area of the first surface, which is adjacent to the speaker. The first speaker hole is opened and the second speaker hole is closed in a state in which the housing is unfolded, and the first speaker hole is closed and the second speaker hole is opened in a state in which the housing is folded.
Abstract:
A semiconductor device includes a substrate, a gate trench in the substrate, a gate insulating film in the gate trench, a titanium nitride (TiN)-lower gate electrode film on the gate insulating film, the titanium nitride (TiN)-lower gate electrode film including a top surface, a first side surface, and a second side surface opposite the first side surface, a polysilicon-upper gate electrode film on the titanium nitride (TiN)-lower gate electrode film, and a gate capping film on the polysilicon-upper gate electrode film. A center portion of the top surface of the titanium nitride (TiN)-lower gate electrode film overlaps a center portion of the polysilicon-upper gate electrode film in a direction that is perpendicular to a top surface of the substrate, and each of the first side surface and the second side surface of the titanium nitride (TiN)-lower gate electrode film is connected to the gate insulating film.
Abstract:
A semiconductor memory device includes; a memory cell array comprising a first sub-memory cell array storing first data having a first characteristic and a second sub-memory cell array storing second data having a second characteristic different from the first characteristic, a first peripheral circuit operatively associated with only the first sub-memory cell array to execute at least one of a read operation and a write operation directed to a target memory cell of the first sub-memory cell array, and a second peripheral circuit operatively associated with only the second sub-memory cell array to execute at least one of a read operation and a write operation directed to a target memory cell of the second sub-memory cell array.
Abstract:
Provided is a neural processing unit that performs application-work including a first neural network operation, the neural processing unit includes a first processing core configured to execute the first neural network operation, a hardware block reconfigurable as a hardware core configured to perform hardware block-work, and at least one processor configured to execute computer-readable instructions to distribute a part of the application-work as the hardware block-work to the hardware block based on a first workload of the first processing core.
Abstract:
A semiconductor device includes a substrate, a gate trench in the substrate, a gate insulating film in the gate trench, a titanium nitride (TiN)-lower gate electrode film on the gate insulating film, the titanium nitride (TiN)-lower gate electrode film including a top surface, a first side surface, and a second side surface opposite the first side surface, a polysilicon-upper gate electrode film on the titanium nitride (TiN)-lower gate electrode film, and a gate capping film on the polysilicon-upper gate electrode film. A center portion of the top surface of the titanium nitride (TiN)-lower gate electrode film overlaps a center portion of the polysilicon-upper gate electrode film in a direction that is perpendicular to a top surface of the substrate, and each of the first side surface and the second side surface of the titanium nitride (TiN)-lower gate electrode film is connected to the gate insulating film.
Abstract:
Provided is a neural processing unit that performs application-work including a first neural network operation, the neural processing unit includes a first processing core configured to execute the first neural network operation, a hardware block reconfigurable as a hardware core configured to perform hardware block-work, and at least one processor configured to execute computer-readable instructions to distribute a part of the application-work as the hardware block-work to the hardware block based on a first workload of the first processing core.
Abstract:
Provided is a neural processing unit that performs application-work including a first neural network operation, the neural processing unit includes a first processing core configured to execute the first neural network operation, a hardware block reconfigurable as a hardware core configured to perform hardware block-work, and at least one processor configured to execute computer-readable instructions to distribute a part of the application-work as the hardware block-work to the hardware block based on a first workload of the first processing core.
Abstract:
A semiconductor device includes a substrate including an active region, a gate trench disposed in the substrate and crossing the active region; a gate dielectric layer disposed in the gate trench; a first gate electrode disposed on the gate dielectric layer and including center and edge portions; a second gate electrode disposed on the first gate electrode; a gate capping insulating layer disposed on the second gate electrode and filling the gate trench; and first and second impurity regions disposed in the substrate opposite to each other with respect to the gate trench. A top surface of each of the center and edge portions contacts a bottom surface of the second gate electrode. The top surface of the second gate electrode is concave. The bottom surface of the gate capping insulating layer is convex, and a side surface of the gate capping insulating layer contacts the gate dielectric layer.
Abstract:
Disclosed are a semiconductor memory device, a controller, a memory system, and an operation method thereof. The semiconductor memory device includes a memory cell array including a plurality of memory cells, and an error correcting code (ECC) decoder configured to receive first data and a parity output from selected memory cells of the memory cell array. The ECC decoder generates a syndrome based on the first data and the parity, generates a decoding status flag (DSF) indicating a type of an error of the first data by the syndrome, and outputs the second data and the DSF to an external device outside of the semiconductor memory device when a read operation of the semiconductor memory device is performed.