Abstract:
Methods and apparatuses are provided method for operating a terminal. A motion pattern of at least one of the terminal or a peer terminal communicating with the terminal is determined in a time interval. A channel quality of a channel between the terminal and the peer terminal is determined in time intervals after the time interval based on the motion pattern in the time interval. At least one first time interval among the time intervals in which the channel quality is greater than or equal to a threshold value and at least one second time interval among the time intervals in which the channel quality is less than the threshold value are determined. Data in the at least one first time interval is transmitted to the peer terminal.
Abstract:
A method of using subscriber identification information stored in mobile user equipment (UE) to connect to a communication service over a public wireless network in the UE, establishing a communication link between the UE and a device, generating network access information (NAI) associated with the communication service in the UE, and sending the NAI from the UE to the device via the communication link. The method further comprises connecting the communication service in the device using the NAI and terminating the connection of the communication service in the UE.
Abstract:
An optical device includes a substrate; a trench in a portion of the substrate; a clad layer arranged in the trench; a first structure arranged on the clad layer to have a first depth; and a second structure arranged on the clad layer to have a second depth different from the first depth.
Abstract:
A semiconductor device includes a fin portion protruding from a substrate. The fin portion includes a base part, an intermediate part on the base part, and a channel part on the intermediate part. A width of the intermediate part is less than a width of the base part and greater than a width of the channel part. A gate electrode coves both sidewalls and a top surface of the channel part, and a device isolation pattern covers both sidewalls of the base part and both sidewalls of the intermediate part.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE).A method for providing a device-to-device (D2D) communication-based service for an isolated user equipment (IUE) by a relay user equipment (RUE) in a mobile communication system is provided. The method includes establishing a D2D link with an IUE; and supporting establishment of a relay cellular link for the IUE based on the established D2D link, wherein the RUE is within a service coverage of an enhanced node B (eNB).
Abstract:
The present invention is to provide a method and device for controlling transmission power by taking comprehensive consideration not only of the effect received onto itself in each device-to-device (D2D) link of a D2D communication network but also of the effect exerted onto the neighboring links. According to an embodiment of the present invention, a processing method in a transmission terminal of a first link for controlling the transmission power of the transmission terminals of links in a D2D communication network, which includes terminals of at least the first link and terminals of a second link adjacent to the first link includes: measuring the strengths of first detection signals transmitted from reception terminals of the first link and the second link; and determining a first transmission power adjustment ratio for the transmission terminal of the first link so that a signal-to-interference ratio of the second link is greater than or equal to a predetermined threshold value on the basis of the measured strengths of the first detection signals.
Abstract:
A method and apparatus are provided for extracting interference signal information. The method includes demodulating control channel signals received from serving and adjacent cells; decoding the control channel signals received from the serving cell to extract control information; decoding the control channel signals received from the adjacent cell; extracting, at each subframe, from the decoded control channel signals received from the adjacent cell, a terminal ID of the adjacent cell; accumulating the extracted terminal IDs; filtering only a control channel signal from among the control channel signals received from the adjacent cell corresponding to a terminal ID having an accumulation count that is greater than or equal to a threshold; determining a reliability value of the filtered control channel signal; identifying the filtered control channel signal as a first interference signal, based on the reliability value; and extracting interference signal information based on the first interference signal.
Abstract:
A method for providing a service by an electronic device according to various embodiments may comprise the steps of: obtaining biometric information of a user; determining at least one service associated with the biometric information out of a plurality of services that the electronic device supports; and providing the determined at least one service.
Abstract:
Methods and apparatuses are provided for operating a first terminal. A motion of the first terminal is determined by using sensor data from at least one sensor of the first terminal. A prediction for a channel quality between the first terminal and a second terminal is performed based on the determined motion of the first terminal. At least one first time duration in which the predicted channel quality is greater than or equal to a threshold value and at least one second time duration in which the predicted channel quality is less than the threshold value are determined. Data is transmitted to the second terminal via a first transmission power, where the first transmission power is set for the at least one first time duration.