Abstract:
A semiconductor package and a semiconductor device including the same. The semiconductor package includes: a package substrate; a plurality of connection elements that are disposed on the package substrate; and a semiconductor chip that includes at least one optical input/output element that transmits/receives an optical signal to/from the outside at an optical input/output angle with respect to a direction perpendicular to a bottom surface of the package substrate, and is electrically connected to the package substrate through the plurality of connection.
Abstract:
An optical phased array (OPA) may be included in a light detection and ranging (LiDAR) system and may be configured to perform beam steering. The OPA may include a cascading structure of splitters configured to enable a branch operation to be performed M times. Each splitter may split an input optical signal in a ratio of 1:1 and output the split input optical signal. The OPA may include a plurality of sets of first phase shifters (PSs), each set of first PSs located exclusively on one output end of a separate splitter, each set of first PSs including a particular quantity of first PSs based on a branch position at which the separate splitter is located. The OPA may be included in a LiDAR system that is further included in a vehicle that is configured to enable navigation of the vehicle, including autonomous navigation, through an environment.
Abstract:
An optical transmitter includes photonic integrated circuits configured to respectively output optical transmission signals in different wavelength ranges. A photonic integrated circuit may include emitters configured to emit beams having different wavelengths; drivers configured to respectively provide power to the emitters, and a wavelength division multiplexer configured to transmit the beams emitted by the emitters. A photonic integrated circuit may include a switch device that controls the drivers, and light detectors configured to detect intensities of the beams emitted from the emitters. The switch device may selectively operate at least one driver of the plurality of drivers based on information associated with intensities of the beams. The switch device may selectively operate a driver connected to an emitter, based on a determination that an intensity of a beam emitted by another emitter is less than a threshold intensity value.
Abstract:
The bi-directional optical integrated circuit device array includes a plurality of bi-directional optical integrated circuit unit devices integrated on a substrate and arranged in two-dimensions. Each of the bi-directional optical integrated circuit unit devices includes a single wavelength laser light source integrated on the substrate, a bi-directional optical device integrated on the substrate and optically connected to the laser light source, and an antenna integrated on the substrate and optically connected to the bi-directional optical device.
Abstract:
A beam steering optical phased array (OPA) may include an optical signal distributor including a plurality of output terminals configured to divide and output input optical signals and phase shifters arranged at the plurality of output terminals and configured to receive the divided optical signals and shift phases thereof to generate phase-shifted optical signals. The beam steering OPA may include antennas configured to receive the phase-shifted optical signals and an optical signal interferometer. The optical signal interferometer may include first input waveguide regions connected to a limited selection of the antennas and extending in a first direction, a multi-mode waveguide region connected to the first input waveguide regions, and a first output waveguide region connected to the multi-mode waveguide region and extending in the first direction. The beam OPA may enable errors due to process dispersion to be effectively corrected, and thus, the beam steering OPA may have enhanced reliability.
Abstract:
Hybrid silicon lasers are provided including a bulk silicon substrate, a localized insulating layer that extends on at least a portion of the bulk silicon substrate, an optical waveguide structure on an upper surface of the localized insulating layer. The optical waveguide structure includes an optical waveguide including a silicon layer. A lasing structure is provided on the optical waveguide structure.
Abstract:
A photonic device is provided. The photonic device includes: a semiconductor layer including first and second regions; an insulating layer covering the semiconductor layer; and first and second plugs extending to pass through the insulating layer and electrically connected to the corresponding first and second regions. The first plug is in a rectifying contact with the first region, and the second plug is in an ohmic contact with the second region.