Abstract:
The present inventive concept provides a driving method of memory controller controlling nonvolatile memory device using variable resistive element. The memory controller may control a plurality of first memory devices and a second memory device. A number of write drivers in the second memory device may be driven when a number of first memory devices among the plurality of first memory devices are used. A different number of write drivers in the second memory device may be driven when a different number of first memory devices among the plurality of first memory devices are used.
Abstract:
The present inventive concept provides a driving method of memory controller controlling nonvolatile memory device using variable resistive element. The memory controller may control a plurality of first memory devices and a second memory device. A number of write drivers in the second memory device may be driven when a number of first memory devices among the plurality of first memory devices are used. A different number of write drivers in the second memory device may be driven when a different number of first memory devices among the plurality of first memory devices are used.
Abstract:
A memory device includes a first word line extending in a first direction on a substrate, a first bit line extending in a second direction on the first word line, a first memory cell disposed between the first word line and the first bit line, a second word line extending in the first direction on the first bit line, a second bit line extending in the second direction on the second word line, a second memory cell disposed between the second word line and the second bit line, and a first bit line connection structure connected to the first bit line and the second bit line. The first bit line connection structure includes a first bit line contact connected to the first bit line and a second bit line contact, which is connected to the second bit line and vertically overlaps the first bit line contact.