Abstract:
A method of forming a carbon coating includes heat treating lithium transition metal composite oxide Li0.9+aMbM′cNdOe, in an atmosphere of a gas mixture including carbon dioxide and compound CnH(2n+2−a)[OH]a, or compound CnH(2n), wherein M and M′ are different from each other and are selected from Ni, Co, Mn, Mo, Cu, Fe, Cr, Ge, Al, Mg, Zr, W, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Ga, Nb, Ag, Hf, Au, Cs, B, and Ba, and N is different from M and M′ and is selected from Ni, Co, Mn, Mo, Cu, Fe, Cr, Ge, Al, Mg, Zr, W, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Ga, Nb, Ag, Hf, Au, Cs, B, Ba, and a combination thereof, or selected from B, F, S, and P, and at least one of the M, M′, and N comprises Ni, Co, Mn, Mo, Cu, or Fe.
Abstract:
A catalyst for reforming hydrocarbons may include a nickel nanoparticle having a controlled crystal facet, the controlled crystal facet being a surface of the nickel nanoparticle and including a {100} face, a {111} face, or a combination thereof. The present disclosure also relates to a production method thereof and a method of reforming hydrocarbons using the same.
Abstract:
A method of preparing graphene includes supplying a gas on a metal catalyst, the gas including CO2, CH4, and H2O, and reacting and cooling the resultant.
Abstract:
A catalyst for reforming hydrocarbons may include an inorganic oxide and a catalyst metal supported on the inorganic metal oxide. At least a portion of the catalyst metal may be supported in the form of a solid-solution particle. The catalyst metal may include a first metal (selected from cobalt, iron, copper, and manganese); nickel; and magnesium.
Abstract:
A CO2 reforming catalyst may include at least one catalyst metal supported in a porous carrier. The at least one catalyst metal may include a transition metal (e.g., Ni, Co, Cr, Mn, Mo, Ag, Cu, Zn, and/or Pd). Each particle of the at least one catalyst metal may be bound with the porous carrier in a form of an alloy. The porous carrier may form a rod-shaped protruding portion around the catalyst metal particle.
Abstract:
A method of preparing graphene includes supplying a gas on a metal catalyst, the gas including CO2, CH4, and H2O, and reacting and cooling the resultant.
Abstract:
A CO2 reforming catalyst may include at least one catalyst metal supported in a porous carrier. The at least one catalyst metal may include a transition metal (e.g., Ni, Co, Cr, Mn, Mo, Ag, Cu, Zn, and/or Pd). Each particle of the at least one catalyst metal may be bound with the porous carrier in a form of an alloy. The porous carrier may form a rod-shaped protruding portion around the catalyst metal particle.
Abstract:
A method of forming a carbon coating includes heat treating lithium transition metal composite oxide Li0.9+aMbM′cNdOe, in an atmosphere of a gas mixture including carbon dioxide and compound CnH(2n+2−a)[OH]a, wherein n is 1 to 20 and a is 0 or 1, or compound CnH(2n), wherein n is 2 to 6, wherein 0≦a≦1.6, 0≦b≦2, 0≦c≦2, 0≦d≦2, b, c, and d are not simultaneously equal to 0, e ranges from 1 to 4, M and M′ are different from each other and are selected from Ni, Co, Mn, Mo, Cu, Fe, Cr, Ge, Al, Mg, Zr, W, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Ga, Nb, Ag, Hf, Au, Cs, B, and Ba, and N is different from M and M′ and is selected from Ni, Co, Mn, Mo, Cu, Fe, Cr, Ge, Al, Mg, Zr, W, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Ga, Nb, Ag, Hf, Au, Cs, B, Ba, and a combination thereof, or selected from Ti, V, Si, B, F, S, and P, and at least one of the M, M′, and N comprises Ni, Co, Mn, Mo, Cu, or Fe.
Abstract:
A catalyst for reforming hydrocarbons may include a catalytically active amount of nickel or nickel oxide dispersed on a metal oxide support. The metal oxide support may be of a single-metal oxide of a first metal or a complex-metal oxide of the first metal and a second metal. A co-catalyst of magnesium oxide (MgO) may anchor the nickel or nickel oxide onto the metal oxide support.