Abstract:
A catalyst for reforming hydrocarbons may include a nickel nanoparticle having a controlled crystal facet, the controlled crystal facet being a surface of the nickel nanoparticle and including a {100} face, a {111} face, or a combination thereof. The present disclosure also relates to a production method thereof and a method of reforming hydrocarbons using the same.
Abstract:
A method of preparing graphene includes supplying a gas on a metal catalyst, the gas including CO2, CH4, and H2O, and reacting and cooling the resultant.
Abstract:
Embodiments of the present disclosure relate to a direct-type reflective diffusion lens and a lighting installation including the reflective diffusion lens. The reflective diffusion lens includes a first reflective surface concave and having a longitudinal cross-section with a parabola shape or normal distribution shape to totally reflect incident light, a bottom surface comprising a light incident surface concave toward the first reflective surface, and a second reflective surface having a longitudinal cross-section inclined by a first angle with respect to a central axis of the lens to totally reflect incident light and a refractive surface connecting the first reflective surface with the bottom surface and comprising a first refractive surface having a longitudinal cross-section inclined by a second angle with respect to the central axis and a second refractive surface having a longitudinal cross-section inclined by a third angle with respect to the central axis.
Abstract:
A method of preparing graphene includes supplying a gas on a metal catalyst, the gas including CO2, CH4, and H2O, and reacting and cooling the resultant.
Abstract:
A CO2 reforming catalyst may include at least one catalyst metal supported in a porous carrier. The at least one catalyst metal may include a transition metal (e.g., Ni, Co, Cr, Mn, Mo, Ag, Cu, Zn, and/or Pd). Each particle of the at least one catalyst metal may be bound with the porous carrier in a form of an alloy. The porous carrier may form a rod-shaped protruding portion around the catalyst metal particle.
Abstract:
A method of forming a carbon coating includes heat treating lithium transition metal composite oxide Li0.9+aMbM′cNdOe, in an atmosphere of a gas mixture including carbon dioxide and compound CnH(2n+2−a)[OH]a, wherein n is 1 to 20 and a is 0 or 1, or compound CnH(2n), wherein n is 2 to 6, wherein 0≦a≦1.6, 0≦b≦2, 0≦c≦2, 0≦d≦2, b, c, and d are not simultaneously equal to 0, e ranges from 1 to 4, M and M′ are different from each other and are selected from Ni, Co, Mn, Mo, Cu, Fe, Cr, Ge, Al, Mg, Zr, W, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Ga, Nb, Ag, Hf, Au, Cs, B, and Ba, and N is different from M and M′ and is selected from Ni, Co, Mn, Mo, Cu, Fe, Cr, Ge, Al, Mg, Zr, W, Ru, Rh, Pd, Os, Ir, Pt, Sc, Ti, V, Ga, Nb, Ag, Hf, Au, Cs, B, Ba, and a combination thereof, or selected from Ti, V, Si, B, F, S, and P, and at least one of the M, M′, and N comprises Ni, Co, Mn, Mo, Cu, or Fe.
Abstract:
A catalyst for reforming hydrocarbons may include a catalytically active amount of nickel or nickel oxide dispersed on a metal oxide support. The metal oxide support may be of a single-metal oxide of a first metal or a complex-metal oxide of the first metal and a second metal. A co-catalyst of magnesium oxide (MgO) may anchor the nickel or nickel oxide onto the metal oxide support.
Abstract:
A binder composition for an electrode of a capacitive deionization apparatus includes a hydrophilic polymer, a cross-linking agent, an ion exchange group, and a latex in a form of an emulsion polymer having an ionic functional group on the surface.
Abstract:
A capacitive deionization electrode may include a conductive material and a polymer on a surface of the conductive material. The polymer may have at least one functional group in a single polymer chain.
Abstract:
Disclosed is a portable communication device including a cover window, a display panel including an active area and an inactive area substantially surrounding the active area, the active area including a plurality of pixels and the inactive area including no pixels, a flexible substrate including a first portion connected with the display panel, and a second portion extended from the first portion and bent below a rear surface of the display panel; a display driver integrated circuit (DDI) disposed in the second portion of the flexible substrate, a sensing circuit disposed in the flexible substrate not to be overlapped with the DDI, a plurality of signal lines each electrically connected between the DDI and at least one pixel of the plurality of pixels, and configured to be used to transmit a signal from the DDI to the at least one pixel, and a sensing line disposed in the flexible substrate and the inactive area except the active area and including a first ending portion which is electrically connected with a power line, and a second ending portion which is electrically connected with at least one signal line of the plurality of signal lines via the sensing circuit.