Abstract:
A semiconductor package that include first and second semiconductor chips bonded together, wherein the first semiconductor chip includes a first semiconductor substrate, a first semiconductor element layer and a first wiring structure sequentially stacked on a first surface of the first semiconductor substrate, first connecting pads and first test pads on the first wiring structure, and first front-side bonding pads, which are connected to the first connecting pads, wherein the second semiconductor chip includes a second semiconductor substrate, a second semiconductor element layer and a second wiring structure sequentially stacked on a third surface of the second semiconductor substrate, and first back-side bonding pads bonded to the first front-side bonding pads on the fourth surface of the second semiconductor substrate, and wherein the first test pads are not electrically connected to the second semiconductor chip.
Abstract:
A method of manufacturing a semiconductor light emitting device includes preparing a light emitting structure including first and second conductivity type semiconductor layers and an active layer interposed therebetween, forming a plurality of seeds on at least one surface of the light emitting structure, and forming a plurality of dome-shaped protrusions by forming optical waveguide groups from the plurality of respective seeds and combining the optical waveguide groups.
Abstract:
A semiconductor device including a substrate including a first conductive pad on a first surface thereof, at least one first bump structure on the first conductive pad, the first bump structure including a first connecting member and a first delamination prevention layer, the first delamination prevention layer on the first connecting member and having a greater hardness than the first connecting member, and a first encapsulant above the first surface of the substrate and surrounding the first bump structure may be provided.
Abstract:
A nanostructure semiconductor light emitting device includes a base layer, an insulating layer and a plurality of light emitting nanostructures. The base layer is formed of a first conductivity type semiconductor. The insulating layer is disposed on the base layer and has a plurality of openings through which regions of the base layer are exposed. Each of the light emitting nanostructures is disposed on the exposed regions of the base layer and includes nanocore formed of a first conductivity type semiconductor, and an active layer and a second conductivity-type semiconductor layer sequentially disposed on side surfaces of the nanocore. Upper surfaces of the light emitting nanostructures are non-planar and contain portions free of the second conductivity-type semiconductor layer in order to prevent light emissions during device driving.
Abstract:
A semiconductor package is provided. The semiconductor package includes a first semiconductor substrate, a first semiconductor element layer on an upper surface of the first semiconductor substrate, a first wiring structure on the first semiconductor element layer, a first connecting pad connected to the first wiring structure, a first test pad connected to the first wiring structure, a first front side bonding pad connected to the first connecting pad and including copper (Cu), and a second front side bonding pad connected to the first front side bonding pad and including copper (Cu) which has a nanotwin crystal structure different from a crystal structure of copper (Cu) included in the first front side bonding pad, wherein a width of the first front side bonding pad in the horizontal direction is different from a width of the second front side bonding pad in the horizontal direction.
Abstract:
A semiconductor package that include first and second semiconductor chips bonded together, wherein the first semiconductor chip includes a first semiconductor substrate, a first semiconductor element layer and a first wiring structure sequentially stacked on a first surface of the first semiconductor substrate, first connecting pads and first test pads on the first wiring structure, and first front-side bonding pads, which are connected to the first connecting pads, wherein the second semiconductor chip includes a second semiconductor substrate, a second semiconductor element layer and a second wiring structure sequentially stacked on a third surface of the second semiconductor substrate, and first back-side bonding pads bonded to the first front-side bonding pads on the fourth surface of the second semiconductor substrate, and wherein the first test pads are not electrically connected to the second semiconductor chip.
Abstract:
A semiconductor light emitting device is provided and includes a protective element including a first lower conductivity-type semiconductor layer and a second lower conductivity-type semiconductor layer. First and second lower electrodes are connected to the first lower conductivity-type semiconductor layer and the second lower conductivity-type semiconductor layer, respectively. A light emitting structure includes a first upper conductivity-type semiconductor layer, an active layer, and a second upper conductivity-type semiconductor layer sequentially formed on the protective element. First and second upper electrodes are connected to the first upper conductivity-type semiconductor layer and the second upper conductivity-type semiconductor layer, respectively.