Abstract:
A method of manufacturing a nanostructure semiconductor light emitting device may include: stacking a mask layer on a conductive base layer and forming a through hole penetrating the mask layer; growing a nanocore through the through hole from the conductive base layer using precursor gas including indium-containing precursor gas in a mixed gas atmosphere of nitrogen and hydrogen; removing the mask layer; and sequentially growing an active layer and a first conductivity type semiconductor layer on a surface of the nanocore.
Abstract:
A nitride based heterojunction semiconductor device includes a GaN layer on a substrate, an Al-doped GaN layer on the GaN layer, an AlGaN layer on the Al-doped GaN layer, a source electrode, a gate electrode, and a drain electrode on the AlGaN layer, a first field plate on the AlGaN layer, the first field plate being in contact with the gate electrode, and a second field plate on the AlGaN layer, the second field plate being separated from the first field plate by a distance.
Abstract:
A power semiconductor device and a manufacturing method thereof, the power semiconductor device including a plurality of first electrodes and a plurality of second electrodes, a plurality of first via electrodes on a first insulating layer and contacting the plurality of first electrodes, a plurality of second via electrodes on the first insulating layer and contacting the plurality of second electrodes, a first electrode pad contacting the plurality of first via electrodes, a second electrode pad contacting the plurality of second via electrodes, a plurality of third via electrodes on a second insulating layer and contacting the first electrode pad, a plurality of fourth via electrodes on the second insulating layer and contacting the second electrode pad, a third electrode pad contacting the plurality of third via electrodes, and a fourth electrode pad contacting the plurality of fourth via electrodes.
Abstract:
A nitride based semiconductor device includes a first metallic junction layer, a Schottky junction layer on the first metallic junction layer, a first group III nitride semiconductor layer on the Schottky junction layer, a first insulating pattern layer on the first group III nitride semiconductor layer, the first insulating layer pattern including curved protrusions, a second group III nitride semiconductor layer laterally grown on the first group III nitride semiconductor layer, a first type group III nitride semiconductor layer on the second group III nitride semiconductor layer, the first type group III nitride semiconductor layer being simultaneously doped with aluminum (Al) and silicon (Si), an ohmic junction layer formed on the first type group III nitride semiconductor layer, a second metallic junction layer on the ohmic junction layer, and a metallic supporting substrate on the second metallic junction layer.