摘要:
Disclosed herein is a nanocrystal comprising a core comprising a first nanocrystal material, the first nanocrystal material including a Group II-VI semiconductor compound or a Group III-V semiconductor compound; a shell being disposed upon a surface of the core and comprising a second nanocrystal material, the second nanocrystal material being different from the first nanocrystal material and including a Group II-VI semiconductor compound or a Group III-V semiconductor compound; and an alloy interlayer disposed between the core and the shell, wherein the emission peak wavelength of the nanocrystal is shifted into a shorter wavelength than the emission peak wavelength of the core.
摘要:
Disclosed herein is a nanocrystal comprising a core comprising a first nanocrystal material, the first nanocrystal material including a Group II-VI semiconductor compound or a Group III-V semiconductor compound; a shell being disposed upon a surface of the core and comprising a second nanocrystal material, the second nanocrystal material being different from the first nanocrystal material and including a Group II-VI semiconductor compound or a Group III-V semiconductor compound; and an alloy interlayer disposed between the core and the shell, wherein the emission peak wavelength of the nanocrystal is shifted into a shorter wavelength than the emission peak wavelength of the core.
摘要:
Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.
摘要:
Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.
摘要:
Disclosed herein is a method for preparing a multilayer of nanocrystals. The method comprises the steps of (i) coating nanocrystals surface-coordinated by a photosensitive compound, or a mixed solution of a photosensitive compound and nanocrystals surface-coordinated by a material miscible with the photosensitive compound, on a substrate, drying the coated substrate, and exposing the dried substrate to UV light to form a first monolayer of nanocrystals, and (ii) repeating the procedure of step (i) to form one or more monolayers of nanocrystals on the first monolayer of nanocrystals.
摘要:
Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.