Abstract:
A method generating a cryptographic key and corresponding helper data includes measuring an analog value associated with a physical property of cells of a memory array; digitizing the measured analog value to generate the cryptographic key; quantizing the measured analog value to generate the corresponding non-leaky helper data.
Abstract:
There is provided a nonvolatile memory device including a memory cell array including nonvolatile memory cells, a battery not supplied with external power and configured to store a charged voltage, a sensing unit configured to sense a degradation state of the nonvolatile memory cells of the memory cell array, and a trigger circuit configured to transmit a refresh trigger signal based on the sensing result, wherein the nonvolatile memory cells of the memory cell array are refreshed using the charged voltage provided by the battery in response to the trigger signal transmitted from the trigger circuit.
Abstract:
At least one example embodiment discloses a method of controlling a nonvolatile memory device including a plurality of blocks, each block including a plurality of physical pages. The method includes receiving a plurality of logical pages associated with a first plurality of logical addresses, respectively, and writing the first plurality of logical pages to the plurality physical addresses according to an ascending order of the logical addresses of the first plurality of logical pages.
Abstract:
A memory system includes a memory controller; and a memory device, the memory device including a memory cell array, the memory cell array including least a first memory page having a plurality of memory cells storing a plurality of stored bits, the memory controller being such that, the memory controller performs a first hard read operation on the first memory page to generate a plurality of read bits corresponding to the plurality of stored bits, and if the memory controller determines to change a value of one of a first group of bits, from among the plurality of read bits, the memory controller selects one of the first group of bits based on log likelihood ratio (LLR) values corresponding, respectively, to each of the first group of bits, and changes the value of the selected bit.