Abstract:
A semiconductor memory device includes a memory cell array, a repair control circuit and a refresh control circuit. The memory cell array includes a plurality of memory cells and a plurality of redundancy memory cells. The repair control circuit receives a repair command and performs a repair operation on a first defective memory cell among the plurality of memory cells during a repair mode. The semiconductor memory device may operate in a repair mode in response to the repair command. The refresh control circuit performs a refresh operation on non-defective ones of the plurality of memory cells during the repair mode.
Abstract:
A fuse data reading circuit is configured to read fuse data in multi-reading modes. The fuse data may be stored in a fuse array that includes a plurality of fuse cells configured to store fuse data. The fuse data reading circuit may include a sensing unit configured to sense the fuse data stored in the fuse cells of the fuse array, and a controller configured to control an operation of reading the fuse data stored in the fuse cells. The controller sets different sensing conditions for sensing the fuse data according to an operation period during the fuse data reading operation to read the fuse data. Methods include operations and use of the fuse data reading circuit.
Abstract:
A memory device includes a memory cell array and a fuse device. The fuse device includes a fuse cell array and a fuse control circuit. The fuse cell array includes a first fuse cell sub-array which stores first data associated with operation of the fuse control circuit, and a second fuse cell sub-array which stores second data associated with operation of the memory device. The fuse control circuit is electrically coupled to the first and second fuse cell sub-arrays, and is configured to read the first and second data from the first and second fuse cell sub-arrays, respectively.
Abstract:
A semiconductor memory device includes a memory cell array, a repair control circuit and a refresh control circuit. The memory cell array includes a plurality of memory cells and a plurality of redundancy memory cells. The repair control circuit receives a repair command and performs a repair operation on a first defective memory cell among the plurality of memory cells during a repair mode. The semiconductor memory device may operate in a repair mode in response to the repair command. The refresh control circuit performs a refresh operation on non-defective ones of the plurality of memory cells during the repair mode.
Abstract:
Provided is a semiconductor memory device. The semiconductor includes a One Time Programmable (OTP) cell array, a converging circuit and a sense amplifier circuit. The OTP cell array includes a plurality of OTP cells connected to a plurality of bit lines, each bit line extending in a first direction. The converging includes a common node contacting a first bit line and a second bit line. The sense amplifier circuit includes a sense amplifier connected to the common node, the sense amplifier configured to amplify a signal of the common node.
Abstract:
A memory device includes a memory cell array and a fuse device. The fuse device includes a fuse cell array and a fuse control circuit. The fuse cell array includes a first fuse cell sub-array which stores first data associated with operation of the fuse control circuit, and a second fuse cell sub-array which stores second data associated with operation of the memory device. The fuse control circuit is electrically coupled to the first and second fuse cell sub-arrays, and is configured to read the first and second data from the first and second fuse cell sub-arrays, respectively.
Abstract:
A semiconductor memory device includes a memory cell array configured to store data including a verification code; a sensing unit configured to sense the stored data including the verification code; and a verification unit configured to determine whether the sensing unit is able to sense the stored data based on a sensing condition, wherein the verification unit is configured to determine whether the sensing unit is able to sense the stored data based on the sensing condition and a value of the verification code sensed by the sensing unit.
Abstract:
A data read start decision device includes: a storing circuit configured to store code key data; a read check circuit configured to output a read start signal in response to code key data read from the storing circuit, and a controller configured to start reading environment setting data from the storing circuit in response to the read start signal. The read check circuit is configured to at least one of: receive the read start signal from the controller and transfer the read start signal to the controller in response to the read code key data; and generate the read start signal based on the read code key data and output the read start signal to the controller.