Abstract:
A memory device includes a memory cell array and a fuse device. The fuse device includes a fuse cell array and a fuse control circuit. The fuse cell array includes a first fuse cell sub-array which stores first data associated with operation of the fuse control circuit, and a second fuse cell sub-array which stores second data associated with operation of the memory device. The fuse control circuit is electrically coupled to the first and second fuse cell sub-arrays, and is configured to read the first and second data from the first and second fuse cell sub-arrays, respectively.
Abstract:
Embedded refresh controllers included in memory devices and memory devices including the embedded refresh controllers are provided. The embedded refresh controllers may include a refresh counter and an address generator. The refresh counter may generate a counter refresh address signal in response to a counter refresh signal such that the counter refresh address signal may represent a sequentially changing address. The address generator may store information with respect to a hammer address that is accessed intensively and may generates a hammer refresh address signal in response to a hammer refresh signal such that the hammer refresh address signal may represent an address of a row that is physically adjacent to a row of the hammer address. Loss of cell data may be reduced and performance of the memory device may be enhanced by detecting the intensively-accessed hammer address and performing the refresh operation based on the detected hammer address efficiently.
Abstract:
A data loading circuit comprises a non-volatile memory configured to store non-volatile data and output a serial data signal based on the stored non-volatile data in response to a power-up operation, a deserializer configured to receive the serial data signal and output multiple data bits at intervals of a unit period based on the received serial data signal, a load controller configured to generate multiple loading selection signals that are sequentially activated one-by-one at each interval of the unit period, and a loading memory unit configured to sequentially store the data bits at each interval of the unit period in response to the loading selection signals.
Abstract:
Provided is a semiconductor memory device. The semiconductor includes a One Time Programmable (OTP) cell array, a converging circuit and a sense amplifier circuit. The OTP cell array includes a plurality of OTP cells connected to a plurality of bit lines, each bit line extending in a first direction. The converging includes a common node contacting a first bit line and a second bit line. The sense amplifier circuit includes a sense amplifier connected to the common node, the sense amplifier configured to amplify a signal of the common node.
Abstract:
An anti-fuse circuit in which anti-fuse program data may be monitored outside of the anti-fuse circuit and a semiconductor device including the anti-fuse circuit are disclosed. The anti-fuse circuit includes an anti-fuse array, a data storage circuit, and a first selecting circuit. The anti-fuse array includes one or more anti-fuse blocks including a first anti-fuse block having a plurality of anti-fuse cells and the anti-fuse array is configured to store anti-fuse program data. The data storage circuit is configured to receive and store the anti-fuse program data from the anti-fuse array through one or more data buses. The first selecting circuit is configured to output anti-fuse program data of a selected anti-fuse block of the one or more anti-fuse blocks in response to a first selection signal.
Abstract:
A refresh controller of a memory device may include a timing controller, a refresh counter and an address generator. The timing controller generates a counter refresh signal in response to receiving a refresh command provided from an external device, and generates a hammer refresh signal that is activated periodically. The refresh counter generates a counter refresh address signal in response to the counter refresh signal, such that the counter refresh address signal represents a row address, the refresh counter being configured sequentially change the counter refresh address signal. The address generator generates a hammer refresh address signal in response to the hammer refresh signal, the hammer refresh address signal representing an address of a row of the memory device that is physically adjacent to a row of the memory device corresponding to a hammer address that is accessed intensively.
Abstract:
A fuse data reading circuit is configured to read fuse data in multi-reading modes. The fuse data may be stored in a fuse array that includes a plurality of fuse cells configured to store fuse data. The fuse data reading circuit may include a sensing unit configured to sense the fuse data stored in the fuse cells of the fuse array, and a controller configured to control an operation of reading the fuse data stored in the fuse cells. The controller sets different sensing conditions for sensing the fuse data according to an operation period during the fuse data reading operation to read the fuse data. Methods include operations and use of the fuse data reading circuit.
Abstract:
A data loading circuit comprises a non-volatile memory configured to store non-volatile data and output a serial data signal based on the stored non-volatile data in response to a power-up operation, a deserializer configured to receive the serial data signal and output multiple data bits at intervals of a unit period based on the received serial data signal, a load controller configured to generate multiple loading selection signals that are sequentially activated one-by-one at each interval of the unit period, and a loading memory unit configured to sequentially store the data bits at each interval of the unit period in response to the loading selection signals.
Abstract:
A memory device includes a memory cell array and a fuse device. The fuse device includes a fuse cell array and a fuse control circuit. The fuse cell array includes a first fuse cell sub-array which stores first data associated with operation of the fuse control circuit, and a second fuse cell sub-array which stores second data associated with operation of the memory device. The fuse control circuit is electrically coupled to the first and second fuse cell sub-arrays, and is configured to read the first and second data from the first and second fuse cell sub-arrays, respectively.