Abstract:
A thin film transistor (TFT) and a method of driving the same are disclosed. The TFT includes: an active layer; a bottom gate electrode disposed below the active layer to drive a first region of the active layer; and a top gate electrode disposed on the active layer to drive a second region of the active layer. The TFT controls the conductivity of the active layer by using the bottom gate electrode and the top gate electrode.
Abstract:
A solder composite is provided. The solder composite may include: a metal-based solder matrix, a capsule dispersed in the solder matrix, and a self-healing material that is encapsulated in the capsule. The self-healing material may be configured to react with the solder matrix when in contact with the solder matrix such that at least one of an electrically conductive intermetallic compound and an electrically conductive alloy is formed.
Abstract:
Graphene transferring methods, a device manufacturing method using the same, and substrate structures including graphene, include forming a catalyst layer on a first substrate, forming a graphene layer on the catalyst layer, forming a protection metal layer on the graphene layer, attaching a supporter to the protection metal layer, separating the first substrate from the catalyst layer such that the protection metal layer, the graphene layer, and the catalyst layer remain on the supporter, removing the catalyst layer from the supporter, and transferring the protection metal layer and the graphene layer from the supporter to a second substrate.