Abstract:
A nanogap device includes a first insulation layer having a nanopore formed therein, a first nanogap electrode which may be formed on the first insulation layer and may be divided into two parts with a nanogap interposed between the two parts, the nanogap facing the nanopore, a second insulation layer formed on the first nanogap electrode, a first graphene layer formed on the second insulation layer, a first semiconductor layer formed on the first graphene layer, a first drain electrode formed on the first semiconductor layer, and a first source electrode formed on the first graphene layer such as to be apart from the first semiconductor layer.
Abstract:
A graphene device may include a channel layer including graphene, a first electrode and second electrode on a first region and second region of the channel layer, respectively, and a capping layer covering the channel layer and the first and second electrodes. A region of the channel layer between the first and second electrodes is exposed by an opening in the capping layer. A gate insulating layer may be on the capping layer to cover the region of the channel layer, and a gate may be on the gate insulating layer.
Abstract:
A graphene electronic device includes: a first conductive layer and a semiconductor layer on a first region of an intermediate layer; a second conductive layer on a second region of the intermediate layer; a graphene layer on the intermediate layer, the semiconductor layer, and the second conductive layer; and a first gate structure and a second gate structure on the graphene layer.
Abstract:
The method of manufacturing a graphene device includes forming an insulating material layer on a substrate, forming first and second metal pads on the insulating material layer spaced apart from each other, forming a graphene layer having a portion defined as an active area between the first and second metal pads on the insulating material layer, forming third and fourth metal pads on the graphene layer spaced apart from each other with the active area therebetween, the third and fourth metal pads extending above the first metal pad and the second metal pad, respectively, forming a first protection layer to cover all the first and second metal pads, the graphene layer, and the third and fourth metal pads, and etching an entire surface of the first protection layer until only a residual layer made of a material for forming the first protection layer remains on the active area.
Abstract:
Graphene transferring methods, a device manufacturing method using the same, and substrate structures including graphene, include forming a catalyst layer on a first substrate, forming a graphene layer on the catalyst layer, forming a protection metal layer on the graphene layer, attaching a supporter to the protection metal layer, separating the first substrate from the catalyst layer such that the protection metal layer, the graphene layer, and the catalyst layer remain on the supporter, removing the catalyst layer from the supporter, and transferring the protection metal layer and the graphene layer from the supporter to a second substrate.
Abstract:
A graphene device manufacturing apparatus includes an electrode, a graphene structure including a metal catalyst layer formed on a substrate, a protection layer, and a graphene layer between the protection layer and the metal catalyst layer, a power unit configured to apply a voltage between the electrode and the metal catalyst layer, and an electrolyte in which the graphene structure is at least partially submerged.
Abstract:
A graphene switching device includes a first electrode and an insulating layer in first and second regions of the semiconductor substrate, respectively, a plurality of metal particles on a surface of the semiconductor substrate between the first and second regions, a graphene layer on the plurality of metal particles and extending on the insulating layer, a second electrode on the graphene layer in the second region and configured to face the insulating layer, a gate insulating layer configured to cover the graphene layer, and a gate electrode on the gate insulating layer. The semiconductor substrate forms an energy barrier between the graphene layer and the first electrode.
Abstract:
A nanogap device which may include a first insulation layer having a nanopore formed therein, a first channel layer which may be on the first insulation layer, a first source electrode and a first drain electrode which may be respectively in contact with both ends of the first channel layer, a second insulation layer which may cover the first channel layer, the first source electrode, and the first drain electrode, and a first nanogap electrode which may be on the second insulation layer and may be divided into two parts with a nanogap, which faces the nanopore, interposed between the two parts.
Abstract:
Transistors, and methods of manufacturing the transistors, include graphene and a material converted from graphene. The transistor may include a channel layer including graphene and a gate insulating layer including a material converted from graphene. The material converted from the graphene may be fluorinated graphene. The channel layer may include a patterned graphene region. The patterned graphene region may be defined by a region converted from graphene. A gate of the transistor may include graphene.
Abstract:
A touch sensor using a graphene diode and/or a touch panel including the touch sensor. The touch sensor includes a first sensing electrode configured to sense a touch; a first output line configured to transmit an electrical signal; and a first diode device including a first control terminal connected to the first sensing electrode, a first anode terminal connected to a voltage application unit, and a first cathode terminal connected to the first output line.