Abstract:
The present disclosure relates to a method of transferring semiconductor elements from a non-flexible substrate to a flexible substrate. The present disclosure also relates to a method of manufacturing a flexible semiconductor device based on the method of transferring semiconductor elements. The semiconductor elements grown or formed on a non-flexible substrate may be effectively transferred to a resin layer while maintaining an arrangement of the semiconductor elements. The resin layer may function as a flexible substrate for supporting the vertical semiconductor elements.
Abstract:
A graphene device may include a channel layer including graphene, a first electrode and second electrode on a first region and second region of the channel layer, respectively, and a capping layer covering the channel layer and the first and second electrodes. A region of the channel layer between the first and second electrodes is exposed by an opening in the capping layer. A gate insulating layer may be on the capping layer to cover the region of the channel layer, and a gate may be on the gate insulating layer.
Abstract:
An optical film manufacturing method includes forming a master in which a shape corresponding to a plurality of micro-lens patterns is engraved, forming a low refractive index pattern layer in which the plurality of micro-lens patterns are formed, by using the master, forming a high refractive index material layer that has a higher refractive index than a refractive index of the low refractive index pattern layer, and imprinting the low refractive index pattern layer on the high refractive index material layer to form a high refractive index pattern layer, on a first surface of a substrate.
Abstract:
A solder composite is provided. The solder composite may include: a metal-based solder matrix, a capsule dispersed in the solder matrix, and a self-healing material that is encapsulated in the capsule. The self-healing material may be configured to react with the solder matrix when in contact with the solder matrix such that at least one of an electrically conductive intermetallic compound and an electrically conductive alloy is formed.
Abstract:
Graphene transferring methods, a device manufacturing method using the same, and substrate structures including graphene, include forming a catalyst layer on a first substrate, forming a graphene layer on the catalyst layer, forming a protection metal layer on the graphene layer, attaching a supporter to the protection metal layer, separating the first substrate from the catalyst layer such that the protection metal layer, the graphene layer, and the catalyst layer remain on the supporter, removing the catalyst layer from the supporter, and transferring the protection metal layer and the graphene layer from the supporter to a second substrate.
Abstract:
A graphene device manufacturing apparatus includes an electrode, a graphene structure including a metal catalyst layer formed on a substrate, a protection layer, and a graphene layer between the protection layer and the metal catalyst layer, a power unit configured to apply a voltage between the electrode and the metal catalyst layer, and an electrolyte in which the graphene structure is at least partially submerged.
Abstract:
A method of transferring graphene includes forming a sacrificial layer and a graphene layer sequentially on a first substrate, bonding the graphene layer to a target layer, and removing the sacrificial layer using a laser and separating the first substrate from the graphene layer.
Abstract:
A bonded substrate structure includes a siloxane-based monomer layer between a first substrate and a second substrate, the siloxane-based monomer layer bonding the first substrate and the second substrate. The first substrate and the second substrate may be one of a silicon substrate and a silicon oxide substrate, respectively.
Abstract:
A method of manufacturing a semiconductor device using a metal oxide includes forming a metal oxide layer on a substrate, forming an amorphous semiconductor layer on the metal oxide layer, and forming a polycrystalline semiconductor layer by crystallizing the amorphous semiconductor layer using the metal oxide layer.
Abstract:
A structure includes a silicon substrate, a plurality of silicon rods on the silicon substrate, a silicon layer on the plurality of silicon rods, and a GaN substrate on the silicon layer.