Abstract:
In a method of operating a three-dimensional image sensor including a light source module according to example embodiments, the three-dimensional image sensor detects a position change of an object by generating a two-dimensional image in a low power standby mode. The three-dimensional image sensor switches a mode from the low power standby mode to a three-dimensional operating mode when the position change of the object is detected in the two-dimensional image. The three-dimensional image sensor performs gesture recognition for the object by generating a three-dimensional image using the light source module in the three-dimensional operating mode.
Abstract:
Provided are a complementary metal-oxide semiconductor (CMOS) image sensor based on a thin-film-on-application specific integrated circuit (TFA), and a method of operating the same. The CMOS image sensor may include at least one floating diffusion region formed in a semiconductor substrate, and a thin film type light sensor disposed to correspond to a plurality of pixels. The CMOS image sensor may also include at least one via electrically connected between the light sensor and the at least one floating diffusion region. The CMOS image sensor may also include a first micro lens disposed to correspond to at least two pixels of the plurality of pixels.
Abstract:
A recess gate transistor includes: a drain region and a source region in a semiconductor substrate and doped with first-type impurities; a recess region recessed in the semiconductor substrate between the drain region and the source region; a gate insulation layer on the recess region, a gate electrode on the gate insulation layer filling the recess region; and a charge pocket region below the recess region and doped with second-type impurities. A semiconductor chip includes a plurality of recess gate transistors, and an image sensor includes a semiconductor chip including a plurality of recess gate transistors.
Abstract:
A binary complementary metal-oxide-semiconductor (CMOS) image sensor includes a pixel array and a readout circuit. The pixel array includes at least one pixel having a plurality of sub-pixels. The readout circuit is configured to quantize a pixel signal output from the pixel using a reference signal. The pixel signal corresponds to sub-pixel signals output from sub-pixels, from among the plurality of sub-pixels, activated in response to incident light.
Abstract:
Methods, systems, and devices for guiding a subject back within the recognizable visual range of a multimedia system are described. According to one of the described methods, when it is determined that the target has left the recognizable range of the multimedia system, sensor information is acquired from a portable electronic device (or controller) the user has been using to control the multimedia system, and the acquired sensor information is used to determine where the user is, relative to the recognizable range. In one example, the user is asked to make a gesture with the portable electronic device, and the sensor information concerning that gesture is used to determine the user's relative location. In another example, the sensor information recorded at the time the user left the recognizable range is used to determine the user's relative location.
Abstract:
A method of recognizing motion of an object may include periodically obtaining depth data of a first resolution and two-dimensional data of a second resolution with respect to a scene using an image capturing device, wherein the second resolution is higher than the first resolution; determining a motion tracking region by recognizing a target object in the scene based on the depth data, such that the motion tracking region corresponds to a portion of a frame and the portion includes the target object; periodically obtaining tracking region data of the second resolution corresponding to the motion tracking region; and/or analyzing the motion of the target object based on the tracking region data.
Abstract:
A unit pixel includes a sensing transistor, a photo diode, and a reset drain region. The sensing transistor includes a reference active region, an output active region, and a gate. The gate is between the reference active region and the output active region to electrically connect the reference active region to the output active region based on a gate voltage. The reference active region and output active region are within a semiconductor substrate. The photo diode is under the gate within the semiconductor substrate. The reset drain region is within the semiconductor substrate and is electrically connected to the photo diode by the gate based on the gate voltage.
Abstract:
An image sensor is provided. The image sensor includes a well of a second conductivity type formed on an impurity layer of a first conductivity type, source and drain regions of the first conductivity type, formed in the well to be spaced apart from each other, a first photo diode of the first conductivity type formed in the well to overlap the source and drain regions, a second photo diode of the first conductivity type formed so as not to overlap the source and drain regions and formed to be adjacent to the first photo diode, and a gate electrode formed on the first and second photo diodes.