Abstract:
A pixel array of an image sensor includes a substrate, a chromatic pixel including a first photodiode formed in the substrate and a color filter formed over the first photodiode, and an achromatic pixel including a second photodiode formed in the substrate, the second photodiode having a nano pillar pattern at a surface region of the substrate.
Abstract:
An apparatus for controlling a pixel output level includes a column signal line connected to an output node of at least one pixel sensor. The apparatus includes a load circuit is connected between the column signal line and a ground terminal. The apparatus also includes a level adjusting circuit configured to adjust a voltage level of a pixel signal output from the at least one pixel sensor to the column signal line based on a correction target value.
Abstract:
An image sensor is provided. The image sensor includes a well of a second conductivity type formed on an impurity layer of a first conductivity type, source and drain regions of the first conductivity type, formed in the well to be spaced apart from each other, a first photo diode of the first conductivity type formed in the well to overlap the source and drain regions, a second photo diode of the first conductivity type formed so as not to overlap the source and drain regions and formed to be adjacent to the first photo diode, and a gate electrode formed on the first and second photo diodes.
Abstract:
Provided are a complementary metal-oxide semiconductor (CMOS) image sensor based on a thin-film-on-application specific integrated circuit (TFA), and a method of operating the same. The CMOS image sensor may include at least one floating diffusion region formed in a semiconductor substrate, and a thin film type light sensor disposed to correspond to a plurality of pixels. The CMOS image sensor may also include at least one via electrically connected between the light sensor and the at least one floating diffusion region. The CMOS image sensor may also include a first micro lens disposed to correspond to at least two pixels of the plurality of pixels.
Abstract:
A binary complementary metal-oxide-semiconductor (CMOS) image sensor includes a pixel array and a readout circuit. The pixel array includes at least one pixel having a plurality of sub-pixels. The readout circuit is configured to quantize a pixel signal output from the pixel using a reference signal. The pixel signal corresponds to sub-pixel signals output from sub-pixels, from among the plurality of sub-pixels, activated in response to incident light.
Abstract:
An iris recognition device, a mobile device having the same, and a method of biometric authentication using the same are provided. The iris recognition device includes: a light source unit configured to transmit a light signal to an iris; and a light source receiver configured to receive a reflected light signal of an image of the iris from the iris, and remove an offset of the reflected light signal, corresponding to noise in the iris image, using a plurality of reference signals having different phases.
Abstract:
A time of flight (TOF) camera device and a method of driving the same are provided. The TOF camera device includes a pulse generator configured to generate a pulse signal, and generate a first photo gate signal and a second photo gate signal; a light source configured to irradiate an object with light emitted in synchronization with the pulse signal; and an image sensor configured to receive light reflected from the object in synchronization with the first photo gate signal during a first frame, and receive light reflected from the object in synchronization with the second photo gate signal during a second frame. The pulse generator is further configured to modulate the pulse signal so as to use a frequency of the light as a single frequency.
Abstract:
A plenoptic camera device and a shading correction method thereof are provided. The plenoptic camera device includes a processor including a shading correction block configured to determine a four-dimensional axis with respect in a raw image, generate a four-dimensional profile by applying a polynomial fit with respect to the plurality of pixels in the raw image based on the four-dimensional axis, and calculate a gain using the four-dimensional profile and a non-volatile memory device configured to store the gain. Accordingly, the plenoptic camera device can remove a vignetting effect using the gain.
Abstract:
A sampling period control circuit according to an example embodiment of the inventive concepts is configured to derive a ramp voltage range of a row signal when analyzing a previous row signal in order to control a ramp voltage range of a next row signal.
Abstract:
An image sensor includes a photo gate controller configured to generate a plurality of demodulated signals respectively corresponding to a plurality of rows of a pixel array and a photo gate driver configured to adjust a phase of the demodulated signals using a source clock signal to remove power, voltage and temperature (PVT) noise and to apply the phase-adjusted demodulated signals to the pixel array. The image sensor matches the phases of the respective demodulated signals using the source clock signal generated based on a reference clock signal, thereby increasing the quality of depth images.