摘要:
The present invention relates to a photobioreactor, and more particularly, a photobioreactor for culturing living organisms such as microalgae, which carry out photosynthesis using carbon dioxide and light energy. The photobioreactor includes: (a) a reaction vessel, in which photosynthesis occurs by photosynthetic organisms; (b) a multipurpose inlet/outlet formed at the outside upper end of the reaction vessel; (c) an outer pipe connected to the multipurpose inlet/outlet at the outside of the reaction vessel; and (d) an inner pipe connected to the multipurpose inlet/outlet at the inside of the reaction vessel, wherein the reaction vessel is made of a transparent film.The photobioreactor according to the present invention is advantageous in that the reaction vessel in which photosynthesis occurs is a plate-type and made of a transparent film, thus achieving improved light transmittance and mobility, and enabling the economically advantageous manufacture and operation thereof. Therefore, the photobioreactor of the present invention can be easily installed anywhere carbon dioxide is discharged, such as around a power-generating plant, in an urban region, a farm, etc., to culture a variety of photosynthetic organisms, and thus to produce useful substances having economically high added values.
摘要:
The present invention relates to a photobioreactor, and more particularly, a photobioreactor for culturing living organisms such as microalgae, which carry out photosynthesis using carbon dioxide and light energy. The photobioreactor includes: (a) a reaction vessel, in which photosynthesis occurs by photosynthetic organisms; (b) a multipurpose inlet/outlet formed at the outside upper end of the reaction vessel; (c) an outer pipe connected to the multipurpose inlet/outlet at the outside of the reaction vessel; and (d) an inner pipe connected to the multipurpose inlet/outlet at the inside of the reaction vessel, wherein the reaction vessel is made of a transparent film.The photobioreactor according to the present invention is advantageous in that the reaction vessel in which photosynthesis occurs is a plate-type and made of a transparent film, thus achieving improved light transmittance and mobility, and enabling the economically advantageous manufacture and operation thereof. Therefore, the photobioreactor of the present invention can be easily installed anywhere carbon dioxide is discharged, such as around a power-generating plant, in an urban region, a farm, etc., to culture a variety of photosynthetic organisms, and thus to produce useful substances having economically high added values.
摘要:
Provided are a method for detecting biomaterials, a method for fabricating a chip for biomaterial detection and a chip for biomaterial detection. The method for detecting biomaterials is characterized by comprising the steps of: (S1) immobilizing polydiacetylene liposomes onto a substrate; (S2) linking the polydiacetylene liposomes together and layering them on the substrate; (S3) immobilizing a material which forms a complementary binding with a subject biomaterial to be detected onto the polydiacetylene liposomes; (S4) exposing the resulted polydiacetylene liposome to UV light so as to form a chip for biomaterial detection; (S5) applying the subject biomaterial to be detected to the chip for biomaterial detection for reaction; and (S6) measuring a fluorescent signal from the chip for biomaterial detection.
摘要:
Disclosed is a method of detecting even a very small amount of a target substance by mixing a linker and a spacer at a suitable ratio and immobilizing the mixture on the surface of carbon nanotubes in a carbon nanotube-based biosensor. This method detects a specific substance at the level of femtomoles and lowers the detection limit of conventional carbon nanotube transistor sensors. Accordingly, the method detects even a very small amount of a target substance, and thus the carbon nanotube-based biosensor is a highly useful sensor which can be used either as a medical sensor for diagnosing diseases or as an environmental sensor.
摘要:
Disclosed is a method of detecting bioproducts using Localized Surface Plasmon Resonance (LSPR) of gold nanoparticles, which can diagnose bioproducts based on changes in the maximum wavelength occurred by an antigen-antibody reaction after immobilization of the gold nanoparticles onto a glass panel. A sensor using such method exhibits high sensitivity, is low in price, and makes quick diagnosis possible, thereby being applicable to various biological fields associated with environmental contaminants, pathogens and the like, as well as diagnosis of diseases. Further, it provides a technology for manufacturing a sensor having higher sensitivity, low price and quick performance, as compared to conventional methods using SPR.
摘要:
Provided are a method for detecting biomaterials, a method for fabricating a chip for biomaterial detection and a chip for biomaterial detection. The method for detecting biomaterials is characterized by comprising the steps of: (S1) immobilizing polydiacetylene liposomes onto a substrate; (S2) linking the polydiacetylene liposomes together and layering them on the substrate; (S3) immobilizing a material which forms a complementary binding with a subject biomaterial to be detected onto the polydiacetylene liposomes; (S4) exposing the resulted polydiacetylene liposome to UV light so as to form a chip for biomaterial detection; (S5) applying the subject biomaterial to be detected to the chip for biomaterial detection for reaction; and (S6) measuring a fluorescent signal from the chip for biomaterial detection.
摘要:
The present invention provides a process of preparing barium titanate powders having fine particle morphology and superior crystallinity, by preparing a sol precursor by using a titanium acylate and a barium compound, spraying the sol precursor in a strong alkaline solution for coprecipitation, crystallizing the barium titanate with an optional hydrothermal reaction, and purifying the barium titanate powder by washing.
摘要:
A method has been developed for control of molecular weight and molecular weight dispersity during production of polyhydroxyalkanoates in genetically engineered organism by control of the level and time of expression of one or more PHA synthases in the organisms. The method was demonstrated by constructing a synthetic operon for PHA production in E. coli in which the level of PHA synthase activity could be tightly controlled by placement of the synthase behind an inducible promoter. Modulation of the total level of PHA synthase activity in the host cell by varying the concentration of the inducer, isopropyl .beta.-D-thiogalactoside (IPTG), was found to effect the molecular weight of the polymer produced in the cell. Specifically, high concentrations of synthase activity were found to yield polymers of low molecular weight while low concentrations of synthase activity yielded polymers of higher molecular weight. Polymer molecular weight dispersity is also proportional to the amount of synthase activity, with less dispersity in polyhydroxyalkanoate compositions produced in expression systems with an initial burst of synthase activity, and higher levels of molecular weight dispersity in polyhydroxyalkanoate compositions produced in expression systems with the levels of synthase activity varied during synthesis of the polyhydroxyalkanoate.