摘要:
An improved optical module having lenses aligned on a lens-positioning V-groove and a fabrication method thereof which includes a silicon substrate, which defines a light transfer path below a surface thereof, including light transferring V-grooves and a light receiving V-groove, and lens-positioning V-groove for determining the position of a lens, wherein two lens-positioning V-grooves are formed therein, an optical transmitter module including a laser which is a light source and is flip-chip-bonded to the substrate by a solder bump after an optical waveguide is previously aligned with the V-groove by using an alignment mark behind the vertical portion of the light transferring v-groove. A light transferring lens attached on one lens-positioning V-groove for condensing the light from the laser, and a laser monitoring optical detector arranged on a side wall opposite the laser of the light transferring V-groove, wherein an active region is flip-chip-bonded toward the substrate, for monitoring the laser, and an optical receiver module including a light receiving lens attached on the lens-positioning V-groove of the silicon substrate for condensing beam externally transferred thereto, and a light receiving optical detector attached to the light receiving lens for detecting beam externally transferred thereto, wherein the optical transmitter module and the optical receiver module are arranged in the same silicon substrate.
摘要:
The present invention relates to an accurate method using laser welding for mounting an optical focusing lens utilized in a semi-conductor laser module for optical transmission and optical amplification through an optical fiber and a laser module so produced. The laser module includes an aligned laser diode, a lens fixture mounting the laser diode, a focusing lens mounted within a lens housing which in turn is mounted by a lens ring to the lens fixture. In the method, the steps include aligning mutual positions between the laser diode and the optical focusing lens in the vertical and horizontal directions so that the magnitude of the optical signal output from the optical fiber is maximized after the distance between the optical focusing lens and the optical fiber is adjusted and fixed to obtain a maximum optical coupling efficiency between the laser diode and the optical fiber. Next a laser-welding step is performed at an interval between the lens housing and the lens ring. The mutual positions between the laser diode and the optical focusing lens are aligned in the vertical and horizontal directions so that the magnitude of the optical signal output from the optical fiber is maximized. Finally a laser-welding step is performed at an interval between the lens fixture and the lens ring.
摘要:
A method of packaging a power semiconductor device is disclosed, comprising the steps of preparing a lead frame including a paddle for providing a semiconductor chip on a top surface thereof, tie bars for supporting said paddle, wherein said paddle being provided lower in horizontal surface than the leads; attaching a heat radiating plate on a bottom surface of the paddle by cladding; attaching a Kovar plate on the top surface of the paddle by soldering, said Kovar plate having similar heat expansion coefficient to that of the chip; providing the chip on the Kovar plate by soldering; wire-bonding terminals of said semiconductor chip to the corresponding leads of the lead frame, respectively; coating polyimide over the semiconductor chip by spin-coating; curing the polyimide coated thus; forming a metal cap above the said paddle by soldering, and injecting a molding material into a molder for enclosing the paddle and curing the molding material injected thus the method can be applied to produce a plastic package of a power semiconductor device at low cost. The metal cap is grounded through the tie bars as a source electrode to shield a noise.
摘要:
A package for a power semiconductor device is made using the method comprising the steps of preparing a lead frame including a blade or paddle for providing a semiconductor chip on a top surface thereof, tie bars for supporting said paddle, wherein said paddle being provided lower in horizontal surface than the leads; attaching a heat radiating plate on a bottom surface of the paddle by cladding; attaching a Kovar plate on the top surface of the paddle by soldering, said Kovar plate having similar heat expansion coefficient to that of the chip; providing the chip on the Kovar plate by soldering; wire-bonding terminals of said semiconductor chip to the corresponding leads of the lead frame, respectively; coating polyimide over the semiconductor chip by spin-coating; curing the polyimide coated thus; forming a metal cap above the said paddle by soldering, and injecting a molding material into a molder for enclosing the paddle and curing the molding material injected thus. The method can be applied to produce a plastic package of a power semiconductor device at low cost. The metal cap is grounded through the tie bars as a source electrode to shield a noise.
摘要:
A polymer electrolyte membrane for a fuel cell, a method of preparing the same, and a fuel cell system comprising the same. The polymer electrolyte membrane includes a metal-bound inorganic ion-conductive salt and an ion-conductive cation exchange resin.
摘要:
The present invention relates to a high temperature proton-conducting polymer membrane, a preparation method thereof, a membrane-electrode assembly using the same and a fuel cell containing the same. More particularly, it relates to a proton-conducting polymer membrane enabling fuel cell operation under high temperature and normal pressure condition, wherein sulfoalkyl or sulfoaryl groups are introduced between layers of metal phosphate and cation exchange groups are present in side chains, a preparation method thereof and a membrane-electrode assembly using the proton exchange membrane and a fuel cell containing the same.
摘要:
A polymer electrolyte membrane for a fuel cell, a method of preparing the same, and a fuel cell system comprising the same. The polymer electrolyte membrane includes a metal-bound inorganic ion-conductive salt and an ion-conductive cation exchange resin.
摘要:
A polymer electrolyte membrane for a fuel cell includes an ion exchange resin membrane, and an electric conductive polymer. The electric conductive polymer is present along a thickness direction of the ion exchange resin membrane from one side of the ion exchange resin membrane to the interior of the ion exchange resin membrane.
摘要:
A separating plate for polymer electrolyte membrane fuel cell and a method for manufacturing the same is provided. Preferred separating plates for polymer electrolyte membrane fuel cell are capable of being light weight and corrosion resistant, as well as being economical to produce and exhibit good physical properties. Preferred separating plates are produced with compositions comprising graphite and phenolic resin.
摘要:
A polymer electrolyte membrane for a fuel cell, a method of preparing the same, and a fuel cell system comprising the same. The polymer electrolyte membrane includes a metal-bound inorganic ion-conductive salt and an ion-conductive cation exchange resin.