摘要:
A method of forming a pair of conductive lines in the fabrication of integrated circuitry includes forming a trench into a damascene material received over a substrate. Conductive material is deposited over the damascene material and to within the trench to overfill the trench. The conductive material is removed back at least to the damascene material to leave at least some of the conductive material remaining in the trench. Etching is conducted longitudinally through the conductive material within the trench to form first and second conductive lines within the trench which are mirror images of one another in lateral cross section along at least a majority of length of the first and second conductive lines. Other implementations are contemplated.
摘要:
A method of forming a pair of conductive lines in the fabrication of integrated circuitry includes forming a trench into a damascene material received over a substrate. Conductive material is deposited over the damascene material and to within the trench to overfill the trench. The conductive material is removed back at least to the damascene material to leave at least some of the conductive material remaining in the trench. Etching is conducted longitudinally through the conductive material within the trench to form first and second conductive lines within the trench which are mirror images of one another in lateral cross section along at least a majority of length of the first and second conductive lines. Other implementations are contemplated.
摘要:
A method of forming a pair of conductive lines in the fabrication of integrated circuitry includes forming a trench into a damascene material received over a substrate. Conductive material is deposited over the damascene material and to within the trench to overfill the trench. The conductive material is removed back at least to the damascene material to leave at least some of the conductive material remaining in the trench. Etching is conducted longitudinally through the conductive material within the trench to form first and second conductive lines within the trench which are mirror images of one another in lateral cross section along at least a majority of length of the first and second conductive lines. Other implementations are contemplated.
摘要:
A method of forming a pair of conductive lines in the fabrication of integrated circuitry includes forming a trench into a damascene material received over a substrate. Conductive material is deposited over the damascene material and to within the trench to overfill the trench. The conductive material is removed back at least to the damascene material to leave at least some of the conductive material remaining in the trench. Etching is conducted longitudinally through the conductive material within the trench to form first and second conductive lines within the trench which are mirror images of one another in lateral cross section along at least a majority of length of the first and second conductive lines. Other implementations are contemplated.
摘要:
Integrated circuits and methods of forming field effect transistors are disclosed. In one aspect, an integrated circuit includes a semiconductor substrate comprising bulk semiconductive material. Electrically insulative material is received within the bulk semiconductive material. Semiconductor material is formed on the insulative material. A field effect transistor is included and comprises a gate, a channel region, and a pair of source/drain regions. In one implementation, one of the source/drain regions is formed in the semiconductor material, and the other of the source/drain regions is formed in the bulk semiconductive material. In one implementation, the electrically insulative material extends from beneath one of the source/drain regions to beneath only a portion of the channel region. Other aspects and implementations, including methodical aspects, are disclosed.
摘要:
The present inventions include a vertical transistor formed by defining a channel length of the vertical-surrounding-gate field effect transistor with self-aligning features. The method provides process steps to define the transistor channel length and recess silicon pillars used to form the vertical-surrounding gate field effect transistor structure for use in the manufacture of semiconductor devices.
摘要:
The invention includes a transistor device having a semiconductor substrate with an upper surface. A pair of source/drain regions are formed within the semiconductor substrate and a channel region is formed within the semiconductor substrate and extends generally perpendicularly relative to the upper surface of the semiconductor substrate. A gate is formed within the semiconductor substrate between the pair of the source/drain regions.
摘要:
Integrated circuits and methods of forming field effect transistors are disclosed. In one aspect, an integrated circuit includes a semiconductor substrate comprising bulk semiconductive material. Electrically insulative material is received within the bulk semiconductive material. Semiconductor material is formed on the insulative material. A field effect transistor is included and comprises a gate, a channel region, and a pair of source/drain regions. In one implementation, one of the source/drain regions is formed in the semiconductor material, and the other of the source/drain regions is formed in the bulk semiconductive material. In one implementation, the electrically insulative material extends from beneath one of the source/drain regions to beneath only a portion of the channel region. Other aspects and implementations, including methodical aspects, are disclosed.
摘要:
The present inventions include a vertical transistor formed by defining a channel length of the vertical-surrounding-gate field effect transistor with self-aligning features. The method provides process steps to define the transistor channel length and recess silicon pillars used to form the vertical-surrounding gate field effect transistor structure for use in the manufacture of semiconductor devices.
摘要:
The invention includes a transistor device having a semiconductor substrate with an upper surface. A pair of source/drain regions are formed within the semiconductor substrate and a channel region is formed within the semiconductor substrate and extends generally perpendicularly relative to the upper surface of the semiconductor substrate. A gate is formed within the semiconductor substrate between the pair of the source/drain regions.