摘要:
A nonvolatile semiconductor memory element includes: a variable resistance element including a first electrode, a variable resistance layer, and a second electrode, and having a resistance value which changes according to a polarity of an electric pulse applied between the first electrode and the second electrode; and a current steering element which is electrically connected to the variable resistance element, allows a current to flow bidirectionally, and has a nonlinear current-voltage characteristic. The current steering element (i) has a structure in which a first current steering element electrode, a first current steering layer, and a second current steering element electrode are stacked in this order, and (ii) includes a second current steering layer which covers side surfaces of the first current steering element electrode, the first current steering layer, and the second current steering element electrode.
摘要:
A nonvolatile semiconductor memory element includes: a variable resistance element including a first electrode, a variable resistance layer, and a second electrode, and having a resistance value which changes according to a polarity of an electric pulse applied between the first electrode and the second electrode; and a current steering element which is electrically connected to the variable resistance element, allows a current to flow bidirectionally, and has a nonlinear current-voltage characteristic. The current steering element (i) has a structure in which a first current steering element electrode, a first semiconductor layer, and a second current steering element electrode are stacked in this order, and (ii) includes a second semiconductor layer which covers side surfaces of the first current steering element electrode, the first semiconductor layer, and the second current steering element electrode.
摘要:
A memory device that can prevent degradation in characteristics of a diode and the destruction due to the miniaturization includes: a substrate; first electrodes, a second electrode, and a third electrode that are stacked above the substrate; a variable resistance layer between the first and second electrodes; and a non-conductive layer between the second and third electrodes. The variable resistance layer includes a high-concentration variable resistance layer closer to the first electrodes, and a low-concentration variable resistance layer closer to the second electrode and having an oxygen concentration lower than that of the high-concentration variable resistance layer. The second and third electrodes and the non-conductive layer comprise the diode, and the first and second electrodes and the variable resistance layer comprise variable resistance elements, a total number of which is equal to that of the first electrodes.
摘要:
A method of manufacturing a nonvolatile memory device that is a variable resistance nonvolatile memory device, which has good consistency with a dual damascene process that is suitable for the formation of fine copper lines and which enables large capacity and high integration. This method includes: forming a variable resistance element, a contact hole and a line groove; and forming a current steering layer of a bidirectional diode element above interlayer insulating layers and a variable resistance layer to cover the line groove without covering a bottom surface of the contact hole.
摘要:
A nonvolatile memory element comprises a resistance variable element 105 configured to reversibly change between a low-resistance state and a high-resistance state in response to electric signals with different polarities which are applied thereto; and a current controlling element 112 configured such that when a current flowing when a voltage whose absolute value is a first value as a desired value which is larger than 0 and smaller than a predetermined voltage value and whose polarity is a first polarity is applied is a first current and a current flowing when a voltage whose absolute value is the first value and whose polarity is a second polarity different from the first polarity is applied is a second current, the first current is higher than the second current, and the resistance variable element is connected in series with the current controlling element such that a polarity of a voltage applied to the current controlling element when the resistance variable element is changed from the low-resistance state to the high-resistance state is the first polarity.
摘要:
A method of manufacturing a nonvolatile memory device that is a variable resistance nonvolatile memory device, which has good consistency with a dual damascene process that is suitable for the formation of fine copper lines and which enables large capacity and high integration. This method includes: forming a variable resistance element, a contact hole and a line groove; and forming a current steering layer of a bidirectional diode element above interlayer insulating layers and a variable resistance layer to cover the line groove without covering a bottom surface of the contact hole.
摘要:
A memory device that can prevent degradation in characteristics of a diode and the destruction due to the miniaturization includes: a substrate; first electrodes, a second electrode, and a third electrode that are stacked above the substrate; a variable resistance layer between the first and second electrodes; and a non-conductive layer between the second and third electrodes. The variable resistance layer includes a high-concentration variable resistance layer closer to the first electrodes, and a low-concentration variable resistance layer closer to the second electrode and having an oxygen concentration lower than that of the high-concentration variable resistance layer. The second and third electrodes and the non-conductive layer comprise the diode, and the first and second electrodes and the variable resistance layer comprise variable resistance elements, a total number of which is equal to that of the first electrodes.
摘要:
A non-volatile semiconductor memory device comprises a plurality of memory cell holes (101) formed through an interlayer insulating layer (80) at respective cross-points of a plurality of first wires (10) of a stripe shape and a plurality of second wires (20) of a stripe shape when viewed from above such that the memory cell holes (101) expose upper surfaces of the plurality of first wires, respectively, a plurality of dummy holes (111) formed on the plurality of first wires in the interlayer insulating layer such that the dummy holes reach the upper surfaces of the plurality of first wires, respectively, and stacked-layer structures formed inside the memory cell holes and inside the dummy holes, respectively, each of the stacked-layer structures including a first electrode (30) and a variable resistance layer (40); an area of a portion of the first wire which is exposed in a lower opening of one of the dummy holes being greater than an area of a portion of the first wire which is exposed in a lower opening of one of the memory cell holes; and one or more of the dummy holes being formed on each of the first wires.
摘要:
A nonvolatile memory element including a resistance variable element configured to reversibly change between a low-resistance state and a high-resistance state in response to electric signals with different polarities; and a current controlling element configured such that when a current flowing when a voltage whose absolute value is a first value which is larger than 0 and smaller than a predetermined voltage value and whose polarity is a first polarity is applied is a first current and a current flowing when a voltage whose absolute value is the first value and whose polarity is a second polarity is applied is a second current, the first current is higher than the second current, and the resistance variable element is connected with the current controlling element such that the first polarity voltage is applied to the current controlling element when the resistance variable element changes from the low-resistance to the high-resistance state.
摘要:
A nonvolatile memory element including a resistance variable element configured to reversibly change between a low-resistance state and a high-resistance state in response to electric signals with different polarities; and a current controlling element configured such that when a current flowing when a voltage whose absolute value is a first value which is larger than 0 and smaller than a predetermined voltage value and whose polarity is a first polarity is applied is a first current and a current flowing when a voltage whose absolute value is the first value and whose polarity is a second polarity is applied is a second current, the first current is higher than the second current, and the resistance variable element is connected with the current controlling element such that the first polarity voltage is applied to the current controlling element when the resistance variable element changes from the low-resistance to the high-resistance state.