摘要:
A metallic wiring film, which is not exfoliated even when exposed to plasma of hydrogen, is provided. A metallic wiring film is constituted by an adhesion layer in which Al is added to copper and a metallic low-resistance layer which is disposed on the adhesion layer and made of pure copper. When a copper alloy including Al and oxygen are included in the adhesion layer and a source electrode and a drain electrode are formed from it, copper does not precipitate at an interface between the adhesion layer and the silicon layer even when being exposed to the hydrogen plasma, which prevents the occurrence of exfoliation between the adhesion layer and the silicon layer. If the amount of Al increases, since widths of the adhesion layer and the metallic low-resistance layer largely differ after etching, the maximum addition amount for permitting the etching to be performed is the upper limit.
摘要:
A wiring film having excellent adhesion and a low resistance is formed. A barrier film having copper as a main component and containing oxygen is formed on an object to form a film thereon by introducing an oxygen gas into a vacuum chamber in which the object to form a film thereon and sputtering a pure copper target. Then, after the introduction of the oxygen gas is stopped, a low-resistance film made of pure copper is formed by sputtering the pure copper target. Since the barrier film and the low-resistance film have copper as the main component, they can be patterned at a time. Since the low-resistance film has a resistance lower than that of the barrier film, the resistance of the entire wiring film is reduced. Since the barrier layer has high adhesion to glass and silicon, the entire wiring film has high adhesion.
摘要:
A wiring film having excellent adhesion and barrier property and a low resistance value is formed. An oxygen gas is introduced into a vacuum chamber in which an object to be film formed is disposed; a sputtering target is sputtered in a vacuum ambience containing oxygen; and a first metallic film is formed on a surface of the object to be film formed. The first sputtering target includes copper as a major component and at least one kind of additive elements selected from an additive element group consisting of Mg, Al, Si, Be, Ca, Sr, Ba, Ra, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb and Dy. Thereafter, a second metallic film is formed on a surface of the first metallic film by sputtering the sputtering target in a state in which the introduction of the oxygen gas into a vacuum ambience is stopped, and then a wiring film is formed by etching the first and second metallic films.
摘要:
Provided is a metallic wiring film which is not peeled away even when exposed to a hydrogen plasma. A metallic wiring film is constituted by an adhesion layer containing copper, Ca, and oxygen and a low-resistance metal layer (a layer of a copper alloy or pure copper) having a lower resistance than the adhesion layer. When the adhesion layer is composed of a copper alloy, which contains Ca and oxygen, and a source electrode film and a drain electrode film adhering to an ohmic contact layer are constituted by the adhesion layer, even if the adhesion layer is exposed to the hydrogen plasma, a Cu-containing oxide formed at an interface between the adhesion layer and the ohmic contact layer is not reduced, so that no peeling occurs between the adhesion layer and a silicon layer.
摘要:
A metallic wiring film, which is not exfoliated even when exposed to a plasma of hydrogen, is provided. A metallic wiring film 20a is constituted by an adhesion layer 51 in which an additive metal is added to copper and a low-resistance metallic layer 52, which is made of pure copper, is disposed on the adhesion layer 51. When the additive metal made of at least one of Ti, Zr and Cr, and oxygen are included in a copper alloy which is in the adhesion layer 51 and a source electrode and a drain electrode are formed from it, copper does not precipitate at an interface between the adhesion layer 51 and the silicon layer even when being exposed to the hydrogen plasma, which prevents exfoliation from occurring between the adhesion layer 51 and the silicon layer. If the amount of additive metal increases, the adhesion layer 51 cannot be etched with an etching liquid for etching the low-resistance metallic layer 52, so that the maximum additional amount to permit the etching to be performed is the upper limit.
摘要:
Provided is a metallic wiring film which is not peeled away even when exposed to a hydrogen plasma. A metallic wiring film is constituted by an adhesion layer containing copper, Ca, and oxygen and a low-resistance metal layer (a layer of a copper alloy or pure copper) having a lower resistance than the adhesion layer. When the adhesion layer is composed of a copper alloy, which contains Ca and oxygen, and a source electrode film and a drain electrode film adhering to an ohmic contact layer are constituted by the adhesion layer, even if the adhesion layer is exposed to the hydrogen plasma, a Cu-containing oxide formed at an interface between the adhesion layer and the ohmic contact layer is not reduced, so that no peeling occurs between the adhesion layer and a silicon layer.
摘要:
A metallic wiring film, which is not exfoliated even when exposed to plasma of hydrogen, is provided. A metallic wiring film is constituted by an adhesion layer in which Al is added to copper and a metallic low-resistance layer which is disposed on the adhesion layer and made of pure copper. When a copper alloy including Al and oxygen are included in the adhesion layer and a source electrode and a drain electrode are formed from it, copper does not precipitate at an interface between the adhesion layer and the silicon layer even when being exposed to the hydrogen plasma, which prevents the occurrence of exfoliation between the adhesion layer and the silicon layer. If the amount of Al increases, since widths of the adhesion layer and the metallic low-resistance layer largely differ after etching, the maximum addition amount for permitting the etching to be performed is the upper limit.
摘要:
A technique is provided which prevents an increase in the resistivity of a conductive wiring film. A conductive layer containing Ca in a content rate of 0.3 atom % or more is provided on the surfaces of each of conductive wiring films which are to be exposed to a gas containing a Si atom in a chemical structure at a high temperature. When a gate insulating layer or a protection film containing Si is formed on the surface of the conductive layer, the Si atoms do not diffuse into the conductive layer and a resistance value does not increase, even if the conductive layer is exposed to the raw material gas containing Si in a chemical structure . Further, a CuCaO layer can be formed as an adhesive layer for preventing Si diffusion from a glass substrate or a silicon semiconductor.
摘要:
A conductive film having high adhesion and low specific resistance is formed. A target containing copper as a main component is sputtered in vacuum ambience while an oxygen gas introduced, and then, a conductive film containing copper as a main component and additive metals, such as Ti or Zr, is formed. Such a conductive film has high adhesion to a silicon layer and a glass substrate and is hardly peeled off from the substrate. Furthermore, the specific resistance is low and the contact resistance to a transparent conductive film is also low. Thus, no deterioration in the electric characteristics occurs even when the conductive film is used for an electrode film. Accordingly, the conductive film formed by the present invention suited for TFT, and electrode films and barrier films of semiconductor elements, in particular.
摘要:
A wiring film having excellent adhesion and barrier property and a low resistance value is formed. An oxygen gas is introduced into a vacuum chamber in which an object to be film formed is disposed; a sputtering target is sputtered in a vacuum ambience containing oxygen; and a first metallic film is formed on a surface of the object to be film formed. The first sputtering target includes copper as a major component and at least one kind of additive elements selected from an additive element group consisting of Mg, Al, Si, Be, Ca, Sr, Ba, Ra, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb and Dy. Thereafter, a second metallic film is formed on a surface of the first metallic film by sputtering the sputtering target in a state in which the introduction of the oxygen gas into a vacuum ambience is stopped, and then a wiring film is formed by etching the first and second metallic films.