Abstract:
An embodiment may take the form of a method usable with a well including pumping an untethered object into the well to land on a restriction downhole in the well and using the restriction to trigger release of an agent carried by the object into the well. Another embodiment may take the form of an apparatus usable with a well having a solid object adapted to be pumped into the well and an agent to be adapted to be released from the solid object in response to the solid object landing on a restriction in the well.
Abstract:
An embodiment may take the form of a method usable with a well including communicating an untethered object downhole in the well to land the object in a restriction to form a fluid barrier, and using an agent carried by the untethered object to seal at least one gap in the fluid barrier. Another embodiment may take the form of an apparatus usable with a well having a solid component to be deployed and be communicated downhole as an untethered object to land in a restriction in the well to form a fluid barrier and an agent attached to the solid component to seal at least one gap in the fluid barrier.
Abstract:
A method can include producing stock material via equal-channel angular pressing where the stock material includes an alloy that includes an average grain size less than approximately 500 nanometers and machining the stock material into at least one part of borehole tool.
Abstract:
A downhole device with compressive layer at the surface thereof. Such devices may be particularly well suited for survivability in the face of potentially long term exposure to a downhole environment. Techniques for forming protective compressive layers at the surfaces of such devices may include positioning devices within a chamber for bombardment by high frequency particles. As a manner of enhancing the compressive layer thickness and effectiveness, low temperature conditions may be applied to the device during the high frequency treatment.
Abstract:
A method for analyzing fluid withdrawn from a subsurface formation includes disposing the withdrawn fluid in a chamber and maintaining the fluid in the chamber substantially at a same temperature and pressure as exists in the subsurface formation. Electric current is passed through the fluid in the chamber using at least one electrode made from a selected metal, the electric current comprising direct current and alternating current of frequency sufficient to determine at least one of (i) resistance of the fluid sample in the chamber directly and (ii) from the direct current determine a polarization resistance of the at least one electrode.
Abstract:
An embodiment may take the form of a method usable with a well including pumping an untethered object into the well to land on a restriction downhole in the well and using the restriction to trigger release of an agent carried by the object into the well. Another embodiment may take the form of an apparatus usable with a well having a solid object adapted to be pumped into the well and an agent to be adapted to be released from the solid object in response to the solid object landing on a restriction in the well.
Abstract:
An embodiment may take the form of a method usable with a well including communicating an untethered object downhole in the well to land the object in a restriction to form a fluid barrier, and using an agent carried by the untethered object to seal at least one gap in the fluid barrier. Another embodiment may take the form of an apparatus usable with a well having a solid component to be deployed and be communicated downhole as an untethered object to land in a restriction in the well to form a fluid barrier and an agent attached to the solid component to seal at least one gap in the fluid barrier.
Abstract:
A thermal mechanical treatment method includes consolidating a powder by a severe plastic deformation process and ageing the consolidated powder at low temperature. The method may include cryomilling the powder before consolidating the powder by a severe plastic deformation process; hot isostatic pressing the consolidated powder into a dense powder before aging the consolidated powder; hot extruding the dense powder into a stock shape before aging the consolidated powder; hot-working the stock shape on a gyrating forge at a predetermined temperature before aging the consolidated powder; or heating the consolidated powder to a predetermined temperature, and maintaining the consolidated powder at the predetermined temperature for a predetermined time.
Abstract:
A method for identifying low resistivity low contrast high temperature high pressure productive subsurface formations rich in acid gases penetrated by a wellbore includes obtaining dielectric permittivity measurements of selected formations adjacent at least part of the wellbore. Nuclear magnetic resonance relaxometry measurements are obtained for the selected formations, the relaxometry measurements being calibrated to identify relaxation times corresponding to acid gases in high humidity at elevated pressure and temperature. Zones are identified for withdrawing formation fluid samples based on the dielectric permittivity and relaxometry measurements.
Abstract:
A method includes pressing a blend of materials; and forming a degradable grip from the pressed blend of materials. The blend of materials includes a non-degradable material that is not degradable in an aqueous environment and an aqueous degradable alloy material. The pressing step includes using a high pressure and high temperature press.