摘要:
A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.
摘要:
Provided herein are methods for manufacturing lithium-metal anode [18] assemblies for thin-film, thick-film and hulk secondary batteries that use liquid or gel-type electrolytes [14], and lithium-metal anode [18] assemblies for thick-film and bulk secondary batteries that use solid electrolytes [18]. These methods involve electrolytic formation of a lithium metal anode [18] between a protecting lithium-stable, solid electrolyte [18] material and an eieethcaiiy-Gonductive substance [20]. Secondary lithium_ batteries made by these methods aw also provided.
摘要:
A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.
摘要:
Exemplary flexible thin film solid state lithium ion batteries (10) and methods for making the same are disclosed. An exemplary flexible solid state thin film electrochemical device (10) may include a flexible substrate (12), first (14) and second electrodes (18), and an electrolyte (16) disposed between the first (14) and second electrodes (18). The electrolyte (16) is disposed on the flexible substrate (12). The first electrode (14) is disposed on the electrolyte (16), and the second electrode (18) having been buried between the electrolyte (16) and the substrate (12).
摘要:
Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.
摘要:
Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.
摘要:
Methods and Pd/V2O5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V205 layer that functions as a H2 insertion host in a Pd/V205 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V205 layer; said Pd layer functioning as an optical modulator.
摘要翻译:公开了用于氢气检测的方法和Pd / V 2 O 5装置。 制备用于广泛响应范围的氢气的化学色谱检测的改进的传感器的示例性方法在暴露和除去氢气时重复的着色/漂白循环期间显示出稳定性。 该方法可以包括提供基底。 该方法还可以包括在用于形成在所述衬底上的Pd / V205氢传感器中沉积用作H2插入主体的V205层。 该方法还可以包括在所述V205层上沉积Pd层; 所述Pd层用作光调制器。
摘要:
A method for protecting catalytic metal-based sensor for sensing the presence of hydrogen in an environment comprising, depositing a protective layer on said sensor, said protective layer being permeable to hydrogen.
摘要:
A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
摘要:
An ultra-fast response, high sensitivity structure for optical detection of low concentrations of hydrogen gas, comprising: a substrate; a water-doped WO3 layer coated on the substrate; and a palladium layer coated on the water-doped WO3 layer.