摘要:
In a method of manufacturing a polysilicon thin film and a method of manufacturing a TFT having the thin film, a laser beam is irradiated on a portion of an amorphous silicon thin film to liquefy the portion of the amorphous silicon thin film. The amorphous silicon thin film is on a first end portion of a substrate. The liquefied silicon is crystallized to form silicon grains. The laser beam is shifted from the first end portion towards a second end portion of the substrate opposite the first end portion by an interval in a first direction. The laser beam is then irradiated onto a portion of the amorphous silicon thin film adjacent to the silicon grains to form a first polysilicon thin film. Therefore, electrical characteristics of the amorphous silicon thin film may be improved.
摘要:
In a method of manufacturing a polysilicon thin film and a method of manufacturing a TFT having the thin film, a laser beam is irradiated on a portion of an amorphous silicon thin film to liquefy the portion of the amorphous silicon thin film. The amorphous silicon thin film is on a first end portion of a substrate. The liquefied silicon is crystallized to form silicon grains. The laser beam is shifted from the first end portion towards a second end portion of the substrate opposite the first end portion by an interval in a first direction. The laser beam is then irradiated onto a portion of the amorphous silicon thin film adjacent to the silicon grains to form a first polysilicon thin film. Therefore, electrical characteristics of the amorphous silicon thin film may be improved.
摘要:
In a method of manufacturing a polysilicon thin film and a method of manufacturing a TFT having the thin film, a laser beam is irradiated on a portion of an amorphous silicon thin film to liquefy the portion of the amorphous silicon thin film. The amorphous silicon thin film is on a first end portion of a substrate. The liquefied silicon is crystallized to form silicon grains. The laser beam is shifted from the first end portion towards a second end portion of the substrate opposite the first end portion by an interval in a first direction. The laser beam is then irradiated onto a portion of the amorphous silicon thin film adjacent to the silicon grains to form a first polysilicon thin film. Therefore, electrical characteristics of the amorphous silicon thin film may be improved.
摘要:
A display device includes a plurality of pixels, wherein each pixel includes: a light emitting element; a first capacitor connected between a first node and a second node; a driving transistor having an input terminal, an output terminal, and a control terminal connected to the second node where the driving transistor supplies a driving current to the light emitting element to emit light; a first switching unit supplying a first reference voltage to the driving transistor according to a first scanning signal and connecting the first node to a data voltage or the driving transistor; and a second switching unit supplying a driving voltage to the driving transistor according to a second scanning signal and connecting the first node to the data voltage. Accordingly, variations in threshold voltage of the driving transistor can be compensated for so that it is possible to display a uniform image.
摘要:
A flat panel display device includes a substrate including a pixel area having a plurality of pixel parts and a peripheral circuit area disposed adjacent to the pixel area to drive the pixel parts, a circuit TFT disposed in the peripheral circuit area, the circuit TFT including a first semiconductor layer having a first crystal growth in a lateral direction, and a pixel TFT disposed in the pixel area, the pixel TFT including a second semiconductor layer having a second crystal isotropic growth.
摘要:
The Mo or MoW composition layer has the low resistivity less than 15 &mgr;&OHgr;cm and is etched to have a smooth taper angle using an Al alloy etchant or a Cr etchant, and the Mo or MoW layer is used for a wiring of a display or a semiconductor device along with an Al layer and a Cr layer. Since the Mo or MoW layer can be deposited so as to give low stress to the substrate by adjusting the deposition pressure, a single MoW layer can used as a wiring by itself. When contact holes are formed in the passivation layer or the gate insulating layer, a lateral etch is reduced by using a polymer layer, an etch gas system CF4+O2 can prevent the etch of the Mo or MoW alloy layer, and an etch gas SF6+HCl(+He) or SF6+Cl2(+He) can form the edge profile of contact holes to be smoothed. Also, when an amorphous silicon layer formed under the Mo or MoW layer is etched by using the Mo or MoW layer as a mask, to use an etch gas system such as hydrogen halide and at least one selected from CF4, CHF3, CHClF2, CH3F and C2F6 yield the good characteristics of TFT, and H2 plasma treatment can cause the characteristics of the TFT to be improved.
摘要:
A shift register including a plurality of stages, each of them including a first node, a second node, and a third node being in a high-impedance state when the first node is in a high-impedance state. The shift register includes an input circuit unit inputting a driving voltage to the first node in response to an output signal of a previous stage, a driving circuit unit generating an output signal according to a voltage of the first node, and a holding unit holding the output signal at a level of a gate-off voltage according to a voltage of the second node in an inactive period of a current stage, in which the holding unit comprises a first diode which applies a clock signal to the second node.
摘要:
A display substrate includes an insulating substrate, a first gate line, a first lower electrode, a second lower electrode, a first upper electrode, and a second upper electrode. The insulating substrate includes a first pixel region and a second pixel region located at a first direction from the first pixel region. The first gate line extends in a second direction crossing the first direction on the insulating substrate. The first and the second lower electrodes are in the first and the second pixel regions, respectively. The first upper electrode overlaps the first lower electrode in the first pixel region and includes a first slit pattern extending in a third direction different from the first and the second directions. The second upper electrode overlaps the second lower electrode in the second pixel region and includes a second slit pattern extending in a fourth direction different from the first to third directions.
摘要:
First, a conductive material of aluminum-based material is deposited and patterned to form a gate wire including a gate line, a gate pad, and a gate electrode. A gate insulating layer is formed by depositing nitride silicon in the range of more than 300° C. for 5 minutes, and a semiconductor layer and an ohmic contact layer are sequentially formed. Next, a conductor layer of a metal such as Cr is deposited and patterned to form a data wire include a data line intersecting the gate line, a source electrode, a drain electrode and a data pad. Then, a passivation layer is deposited and patterned to form contact holes exposing the drain electrode, the gate pad and the data pad. Next, indium zinc oxide is deposited and patterned to form a pixel electrode, a redundant gate pad and a redundant data pad respectively connected to the drain electrode, the gate pad and the data pad.
摘要:
In a liquid crystal display, a plurality of gate lines and data lines are provided on a first substrate including a display area as a screen, and a peripheral area external to the display area wherein a plurality of pixel electrodes are electrically connected to the gate lines and to the data lines, and some of the pixel electrodes extend to be located in the peripheral area; and optionally, a black matrix is formed on a second substrate disposed opposite to the first substrate for screening the extended portions of the pixel electrodes located in the peripheral area, a rubbing direction of aligning films is formed on the first and the second substrates towards the extended portions of the pixel electrodes located in the peripheral area so that impurity ions on the surface of the aligning film travel along the rubbing direction to stop at the extended portions of the pixel electrode, and an image defect area caused by the impurity ions is screened with the black matrix.