摘要:
A thin film transistor (“TFT”) array panel includes; a substrate including a display and peripheral area, a display area signal line and a display area TFT disposed in the display area, the display area TFT connected to the display area signal line, a plurality of peripheral area signal lines, a light blocking member disposed on the display area signal line, the display area TFT, and the peripheral area signal lines, a transparent connector connecting one of peripheral area signal lines and another one of the peripheral area signal lines through a contact hole passing through the light blocking member, a pixel electrode connected to the display area TFT, a spacer disposed on a layer above the light blocking member, and a light blocking assistance member composed of the same material as the spacer on the transparent connector, the light blocking assistance member covering at least the contact hole.
摘要:
The present invention relates to a liquid crystal display. The liquid crystal display has a lower panel including a first pixel area having a first pixel electrode and a first light leakage preventing member, a final pixel area having a second pixel electrode and a second light leakage preventing member, and middle pixel areas disposed between the first pixel area and the final pixel area, each of the middle pixel areas including a first middle pixel electrode and a second middle pixel electrode. Accordingly, light leakage may be effectively prevented at the first pixel area and the final pixel area that are disposed on the edge.
摘要:
The present invention relates to a liquid crystal display. The liquid crystal display has a lower panel including a first pixel area having a first pixel electrode and a first light leakage preventing member, a final pixel area having a second pixel electrode and a second light leakage preventing member, and middle pixel areas disposed between the first pixel area and the final pixel area, each of the middle pixel areas including a first middle pixel electrode and a second middle pixel electrode. Accordingly, light leakage may be effectively prevented at the first pixel area and the final pixel area that are disposed on the edge.
摘要:
A method for manufacturing a thin film transistor array panel includes; forming a gate line including a gate electrode and a height increasing member on a substrate, forming a gate insulating layer on the gate line and the height increasing member, forming a semiconductor, a data line including a source electrode, and a drain electrode facing the source electrode and overlapping at least a portion of the height increasing member on the gate insulating layer, forming a first insulating layer on the gate insulating layer, a data line and the drain electrode, forming a light-blocking member on a portion of the first insulating layer corresponding to the gate line and the data line, forming a color filter in an area bound by the light-blocking member, forming a second insulating layer on the light-blocking member and the color filter, and patterning the second insulating layer, the light-blocking member or the color filter, and the first insulating layer to form a contact hole exposing a portion of the drain electrode aligned with the height increasing member.
摘要:
A TFT array panel includes an insulating substrate, a gate line and a storage electrode line formed thereon. The gate line and the storage electrode line are covered with a gate insulating layer, and a semiconductor island is formed on the gate insulating layer. A pair of ohmic contacts are formed on the semiconductor island, and a data line and a drain electrode are formed thereon. The data line and the drain electrode are covered with a passivation layer having a contact hole exposing the drain electrode. A pixel electrode is formed on the passivation layer and connected to the drain electrode through the contact hole. The TFT array panel is covered with an alignment layer rubbed approximately in a direction from the upper left corner to the lower right corner of the TFT array panel or the pixel electrodes. The pixel electrode has approximately a rectangular shape and overlaps the gate line and the data line. The pixel electrode has an expansion located near the upper left corner of the pixel electrode to increase the width of the corresponding overlapping area between the pixel electrode and the gate line and/or the data line.
摘要:
A pixel electrode is located in a pixel area defined by the intersections of the two adjacent gate lines and the two adjacent data lines, and has two linear openings extending in the transverse direction, which divide the pixel electrodes into three rectangular portions arranged in the longitudinal direction. The portions are connected in turn, and each portion of the pixel electrode has an X-shaped projection formed by the X-shaped member thereunder, and portions of the gate insulating film and the passivation film on the member. Since the gate insulating film and the passivation film are also located on the gate lines and the data lines, and the layered structure on the wires acts as peripheral projections of the pixel electrode. Each area enclosed by the projections, the openings and the peripheral projections is in a shape of equilateral trapezoid. The areas may be defined as the areas where the pixel electrode is in direct contact with the substrate. That is, each area has a planar shape of triangle, of which corner at the center of X-shape is chamfered. This structure causes a splay arrangement or a bend arrangement of the liquid crystal molecules in each domain, which is defined as a portion of the liquid crystal layer over each divided area, to be reinforced to improve the response time.
摘要:
A TFT array panel includes an insulating substrate, a gate line and a storage electrode line formed thereon. The gate line and the storage electrode line are covered with a gate insulating layer, and a semiconductor island is formed on the gate insulating layer. A pair of ohmic contacts are formed on the semiconductor island, and a data line and a drain electrode are formed thereon. The data line and the drain electrode are covered with a passivation layer having a contact hole exposing the drain electrode. A pixel electrode is formed on the passivation layer and connected to the drain electrode through the contact hole. The TFT array panel is covered with an alignment layer rubbed approximately in a direction from the upper left corner to the lower right corner of the TFT array panel or the pixel electrodes. The pixel electrode has approximately a rectangular shape and overlaps the gate line and the data line. The pixel electrode has an expansion located near the upper left corner of the pixel electrode to increase the width of the corresponding overlapping area between the pixel electrode and the gate line and/or the data line.
摘要:
A conductive layer, including a lower layer made of refractory metal such as chromium, molybdenum, and molybdenum alloy and an upper layer made of aluminum or aluminum alloy, is deposited and patterned to form a gate wire including a gate line, a gate pad, and a gate electrode on a substrate. At this time, the upper layer of the gate pad is removed using a photoresist pattern having different thicknesses depending on position as etch mask. A gate insulating layer, a semiconductor layer, and an ohmic contact layer are sequentially formed. A conductive material is deposited and patterned to form a data wire including a data line, a source electrode, a drain electrode, and a data pad. Next, a passivation layer is deposited and patterned to form contact holes respectively exposing the drain electrode, the gate pad, and the data pad. At this time, the contact hole on the gate pad only exposes the lower layer of the gate pad, and the gate insulating layer and the passivation layer completely cover the upper layer of the gate pad. Next, indium tin oxide is deposited and patterned to form a pixel electrode, a redundant gate pad, and a redundant data pad respectively connected to the pixel electrode, the gate pad, and the data pad.
摘要:
A TFT array panel includes an insulating substrate, a gate line and a storage electrode line formed thereon. The gate line and the storage electrode line are covered with a gate insulating layer, and a semiconductor island is formed on the gate insulating layer. A pair of ohmic contacts are formed on the semiconductor island, and a data line and a drain electrode are formed thereon. The data line and the drain electrode are covered with a passivation layer having a contact hole exposing the drain electrode. A pixel electrode is formed on the passivation layer and connected to the drain electrode through the contact hole. The TFT array panel is covered with an alignment layer rubbed approximately in a direction from the upper left corner to the lower right corner of the TFT array panel or the pixel electrodes. The pixel electrode has approximately a rectangular shape and overlaps the gate line and the data line. The pixel electrode has an expansion located near the upper left corner of the pixel electrode to increase the width of the corresponding overlapping area between the pixel electrode and the gate line and/or the data line.
摘要:
A conductive layer, including a lower layer made of refractory metal such as chromium, molybdenum, and molybdenum alloy and an upper layer made of aluminum or aluminum alloy, is deposited and patterned to form a gate wire including a gate line, a gate pad, and a gate electrode on a substrate. At this time, the upper layer of the gate pad is removed using a photoresist pattern having different thicknesses depending on position as etch mask. A gate insulating layer, a semiconductor layer, and an ohmic contact layer are sequentially formed. A conductive material is deposited and patterned to form a data wire including a data line, a source electrode, a drain electrode, and a data pad. Next, a passivation layer is deposited and patterned to form contact holes respectively exposing the drain electrode, the gate pad, and the data pad. At this time, the contact hole on the gate pad only exposes the lower layer of the gate pad, and the gate insulating layer and the passivation layer completely cover the upper layer of the gate pad. Next, indium tin oxide is deposited and patterned to form a pixel electrode, a redundant gate pad, and a redundant data pad respectively connected to the pixel electrode, the gate pad, and the data pad.