Abstract:
An electronic paper display panel, a touch detecting method thereof and an electronic device are provided. The electronic paper display panel includes: a first substrate and a pixel electrode array which is arranged on the first substrate; an inductance coil array disposed between the first substrate and the pixel electrode array and including a plurality of inductance coils arranged in array, each inductance coil has an input terminal and an output terminal; a plurality of driving lines arranged with the plurality of inductance coils respectively, each driving line is electrically connected to the input terminal of the corresponding inductance coil; and a plurality of touch lines arranged with the plurality of inductance coils respectively, each touch line is electrically connected to the output terminal of the corresponding inductance coil.
Abstract:
The present disclosure provides chip package structure, packaging method, camera module and electronic equipment. The package structure includes chip package module, which includes light-transmitting substrate, wiring layer located on side of light-transmitting substrate and including first metal wire, conductor located on side of wiring layer facing away from light-transmitting substrate, photosensitive chip located on side of wiring layer facing away from the light-transmitting substrate, active chip located on side of wiring layer facing away from light-transmitting substrate, and plastic encapsulation layer encapsulating photosensitive chip and active chip. The conductor includes first end electrically connected to first metal wire, and second end. The photosensitive chip includes pin electrically connected to first metal wire and has photosensitive surface facing towards light-transmitting substrate. The photosensitive surface includes photosensitive region that is not overlapping first metal wire. The active chip includes pin electrically connected to first metal wire.
Abstract:
A panel includes a substrate, an array layer and an electrode array layer. The array layer is on a side of the substrate; the electrode array layer is on a side of the array layer away from the substrate; and the array layer includes an active layer, a gate metal layer and a source/drain metal layer. The substrate includes drive units arranged in an array, scan line groups, data lines extending in a second direction; and common signal lines extending in the second direction. The scan line group includes first scan lines and second scan lines, extending in a first direction. The first direction is perpendicular with the second direction. The electrode array layer includes drive electrodes arranged in an array; the drive electrodes correspond to the drive units; and the drive unit includes a first transistor, a second transistor, a third transistor, a first capacitor and a second capacitor.
Abstract:
A drive circuit and its drive method, and a panel and its drive method are provided. The drive circuit includes a step-up unit, a plurality of signal input terminals and a signal output terminal, which are electrically connected with each other. The step-up unit includes a first module, a second module, a third module and a first capacitor, which are electrically connected with each other. The first module is configured to transmit a signal of a third signal input terminal to a first electrode of the first capacitor. The second module is configured to transmit a signal of a fourth signal input terminal to a second electrode of the first capacitor. The third module is configured to transmit a signal of the third signal input terminal to the second electrode of the first capacitor, which further increases the signal of the first electrode of the first capacitor.
Abstract:
Chip package structure and chip package method are provided. The chip package structure includes an encapsulating layer, a redistribution layer, a soldering pad group, and bare chips. Connecting posts is formed on a side of the bare chips. The encapsulating layer covers the bare chips and the connecting posts, while exposes a side of the connecting posts away from the bare chips. The redistribution layer on the connecting posts includes a first redistribution wire, a second redistribution wire, and a third redistribution wire. The first redistribution wire and the second redistribution wire are electrically connected to at least one connecting post respectively, and the third redistribution layer is electrically connected to remaining connecting posts. The soldering pad group on the redistribution layer includes an input soldering pad electrically connected to the first redistribution wire and an output soldering pad electrically connected to the second redistribution wire.
Abstract:
Chip package structure and chip package method are provided. The chip package structure includes an encapsulating layer, a first metal layer, a second metal layer, and bare chips. The bare chips include first bare chips and second bare chips. First-connecting-posts are formed on a side of the first bare chips and on a side of the second bare chips. The encapsulating layer covers the bare chips and the first-connecting-posts. The first metal layer is disposed on the side of the first-connecting-posts away from the bare chips and includes first capacitor polar plates and conductive parts. The first capacitor polar plates are electrically connected to the first-connecting-posts on the first bare chips, and the conductive parts are electrically connected to the first-connecting-posts on the second bare chips. The second metal layer is disposed on a side of the first metal layer away from the encapsulating layer and includes second capacitor polar plates electrically connected to the conductive parts.
Abstract:
Provided are a semiconductor package and a method for fabricating the semiconductor package. The method includes the followings steps: a first workpiece is provided, where the first workpiece includes a first substrate and multiple first rewiring structures arranged on the first substrate at intervals, and each first rewiring structure includes at least two first rewiring layers; an encapsulation layer is formed on the first rewiring structures, where the encapsulation layer is provided with multiple first through holes, and the first through holes expose one first rewiring layer; at least two second rewiring layers are disposed on a side of the encapsulation layer facing away from the first rewiring layer; multiple semiconductor elements are provided, where the semiconductor elements are arranged on a side of the first rewiring structures facing away from the encapsulation layer, where the first rewiring layers are electrically connected to pins of the semiconductor elements.
Abstract:
A microfluidic chip, a method for driving a microfluidic chip and an analysis apparatus are provided. An exemplary microfluidic chip includes a substrate; a number of M driving electrodes disposed on a side of the substrate and arranged along a first direction; and a number of N signal terminals electrically connected to the number of M driving electrodes. Any three adjacent driving electrodes are connected to different signal terminals, respectively; a number of A of the number of M driving electrodes are connected to a same signal terminal; and M, N and A are positive integers, and M≥4, N≥3, M>N, and A≥2.
Abstract:
Disclosed are a display panel and a display device. The display panel includes: an upper substrate, a lower substrate and an electrophoretic layer located between the upper substrate and the lower substrate; wherein, the lower substrate includes a plurality of pixel electrodes arranged in a matrix and a plurality of touch electrodes; the upper substrate includes a common electrode layer, a plurality of openings are provided on the common electrode layer, the maximum aperture of the openings is less than or equal to a space between adjacent pixel electrodes.
Abstract:
A pixel structure is disclosed. The pixel structure includes a substrate, a plurality of scan lines, and a plurality of data lines crossing the scan lines to form pixel unit areas, where the data lines are insulated from the scan lines. The pixel structure also includes a plurality of first electrodes formed in the pixel unit areas, a plurality of second electrodes insulated from the first electrodes and located closer to the substrate than the first electrodes, and a plurality of signal lines located in a same layer as topmost electrodes farthest from the substrate, where the signal lines are arranged to be insulated from the topmost electrodes.