摘要:
Trilayered Beam MEMS Device and Related Methods. According to one embodiment, a method for fabricating a trilayered beam is provided. The method can include depositing a sacrificial layer on a substrate and depositing a first conductive layer on the sacrificial layer. The method can also include forming a first conductive microstructure by removing a portion of the first conductive layer. Furthermore, the method can include depositing a structural layer on the first conductive microstructure, the sacrificial layer, and the substrate and forming a via through the structural layer to the first conductive microstructure. Still furthermore, the method can include the following: depositing a second conductive layer on the structural layer and in the via; forming a second conductive microstructure by removing a portion of the second conductive layer, wherein the second conductive microstructure electrically communicates with the first conductive microstructure through the via; and removing a sufficient amount of the sacrificial layer so as to separate the first conductive microstructure from the substrate, wherein the structural layer is supported by the substrate at a first end and is freely suspended above the substrate at an opposing second end.
摘要:
MEMS Device having Electrothermal Actuation and Release and Method for Fabricating. According to one embodiment, a microscale switch is provided and can include a substrate and a stationary electrode and stationary contact formed on the substrate. The switch can further include a movable microcomponent suspended above the substrate. The microcomponent can include a structural layer including at least one end fixed with respect to the substrate. The microcomponent can further include a movable electrode spaced from the stationary electrode and a movable contact spaced from the stationary electrode. The microcomponent can include an electrothermal component attached to the structural layer and operable to produce heating for generating force for moving the structural layer.
摘要:
Methods for Implementation of a Switching Function in a Microscale Device and for Fabrication of a Microscale Switch. According to one embodiment, a method is provided for implementing a switching function in a microscale device. The method can include providing a stationary electrode and a stationary contact formed on a substrate. Further, a movable microcomponent suspended above the substrate can be provided. A voltage can be applied between the between a movable electrode of the microcomponent and the stationary electrode to electrostatically couple the movable electrode with the stationary electrode, whereby the movable component is deflected toward the substrate and a movable contact moves into contact with the stationary contact to permit an electrical signal to pass through the movable and stationary contacts. A current can be applied through the first electrothermal component to produce heating for generating force for moving the microcomponent.
摘要:
Trilayered Beam MEMS Device and Related Methods. According to one embodiment, a method for fabricating a trilayered beam is provided. The method can include depositing a sacrificial layer on a substrate and depositing a first conductive layer on the sacrificial layer. The method can also include forming a first conductive microstructure by removing a portion of the first conductive layer. Furthermore, the method can include depositing a structural layer on the first conductive microstructure, the sacrificial layer, and the substrate and forming a via through the structural layer to the first conductive microstructure. Still furthermore, the method can include the following: depositing a second conductive layer on the structural layer and in the via; forming a second conductive microstructure by removing a portion of the second conductive layer, wherein the second conductive microstructure electrically communicates with the first conductive microstructure through the via; and removing a sufficient amount of the sacrificial layer so as to separate the first conductive microstructure from the substrate, wherein the structural layer is supported by the substrate at a first end and is freely suspended above the substrate at an opposing second end.
摘要:
Electrothermal Self-Latching MEMS Switch and Method. According to one embodiment, a microscale switch having a movable microcomponent is provided and includes a substrate having a stationary contact. The switch can also include a structural layer having a movable contact positioned for contacting the stationary contact when the structural layer moves toward the substrate. An electrothermal latch attached to the structural layer and having electrical communication with the movable contact to provide current flow between the electrothermal latch and the stationary contact when the movable contact contacts the stationary contact for maintaining the movable contact in contact with the stationary contact.
摘要:
According to one aspect, the subject matter described herein includes a MEMS fixed capacitor and a method for fabricating the MEMS fixed capacitor. The MEMS fixed capacitor can include a first stationary, capacitive plate on a substrate. Further, the MEMS fixed capacitor can include a non-conductive, stationary beam suspended above the substrate. The MEMS fixed capacitor can also include a second stationary, capacitive plate spaced a predetermined distance from the first stationary, capacitive plate for producing a predetermined capacitance between the capacitive plates.
摘要:
MEMS Device Having A Trilayered Beam And Related Methods. According to one embodiment, a movable, trilayered microcomponent suspended over a substrate is provided and includes a first electrically conductive layer patterned to define a movable electrode. The first metal layer is separated from the substrate by a gap. The microcomponent further includes a dielectric layer formed on the first metal layer and having an end fixed with respect to the substrate. Furthermore, the microcomponent includes a second electrically conductive layer formed on the dielectric layer and patterned to define an electrode interconnect for electrically communicating with the movable electrode.
摘要:
A micro-scale interconnect device with internal heat spreader and method for fabricating same. The device includes first and second arrays of generally coplanar electrical communication lines. The first array is disposed generally along a first plane, and the second array is disposed generally along a second plane spaced from the first plane. The arrays are electrically isolated from each other. Embedded within the interconnect device is a heat spreader element. The heat spreader element comprises a dielectric material disposed in thermal contact with at least one of the arrays, and a layer of thermally conductive material embedded in the dielectric material. The device is fabricated by forming layers of electrically conductive, dielectric, and thermally conductive materials on a substrate. The layers are arranged to enable heat energy given off by current-carrying communication lines to be transferred away from the communication lines.