摘要:
Interfused nanocrystals including two or more materials, further including an alloy layer formed of the two or more materials. In addition, a method of preparing the interfused nanocrystals. In the interfused nanocrystals, the alloy layer may be present at the interface between the two or more nanocrystals, thus increasing the material stability. A material having excellent quantum efficiency in the blue light range may be synthesized.
摘要:
A semiconductor nanocrystal, wherein the semiconductor nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.
摘要:
A nanocrystal electroluminescence device comprising a polymer hole transport layer, a nanocrystal light-emitting layer and an organic electron transport layer wherein the nanocrystal light-emitting layer is independently and separately formed between the polymer hole transport layer and the organic electron transport layer. According to the nanocrystal electroluminescence device, since the hole transport layer, the nanocrystal light-emitting layer and the electron transport layer are completely separated from one another, the electroluminescence device provides a pure nanocrystal luminescence spectrum having limited luminescence from other organic layers and substantially no influence by operational conditions, such as voltage. Further included is a method for fabricating the nanocrystal electroluminescence device.
摘要:
A method for preparing a multilayer of nanocrystals. The method includes the steps of (i) coating nanocrystals surface-coordinated by a photosensitive compound, or a mixed solution of a photosensitive compound and nanocrystals surface-coordinated by a material miscible with the photosensitive compound, on a substrate, drying the coated substrate, and exposing the dried substrate to UV light to form a first monolayer of nanocrystals, and (ii) repeating the procedure of step (i) to form one or more monolayers of nanocrystals on the first monolayer of nanocrystals. Further, an organic-inorganic hybrid electroluminescence device using a multilayer of nanocrystals prepared by the method as a luminescent layer. The luminescent efficiency and luminescence intensity of the electroluminescence device can be enhanced, and the electrical properties of the electroluminescence device can be controlled by the use of the multilayer of nanocrystals as a luminescent layer.
摘要:
A metal sulfide nanocrystal manufactured by a method of reacting a metal precursor and an alkyl thiol in a solvent, wherein the alkyl thiol reacts with the metal precursor to form the metal sulfide nanocrystals, wherein the alkyl thiol is present on the surface of the metal sulfide nanocrystal, wherein the alkyl thiol is bonded to the sulfur crystal lattice. A metal sulfide nanocrystal manufactured with a core-shell structure by a method of reacting a metal precursor and an alkyl thiol in a solvent to form a metal sulfide layer on the surface of a core, wherein the alkyl thiol is present on the surface of the metal sulfide nanocrystal, wherein the alkyl thiol is bonded to the sulfur crystal lattice. These metal sulfide nanocrystals can have a uniform particle size at the nanometer-scale level, selective and desired crystal structures, and various shapes.
摘要:
A method for preparing a multilayer of nanocrystals. The method includes the steps of (i) coating nanocrystals surface-coordinated by a photosensitive compound, or a mixed solution of a photosensitive compound and nanocrystals surface-coordinated by a material miscible with the photosensitive compound, on a substrate, drying the coated substrate, and exposing the dried substrate to UV light to form a first monolayer of nanocrystals, and (ii) repeating the procedure of step (i) to form one or more monolayers of nanocrystals on the first monolayer of nanocrystals. Further, an organic-inorganic hybrid electroluminescence device using a multilayer of nanocrystals prepared by the method as a luminescent layer.
摘要:
A cadmium sulfide nanocrystal, wherein the cadmium sulfide nanocrystal shows maximum luminescence peaks at two or more wavelengths and most of the atoms constituting the nanocrystal are present at the surface of the nanocrystal to form defects.
摘要:
A method for preparing a multilayer of nanocrystals. The method includes the steps of (i) coating nanocrystals surface-coordinated by a photosensitive compound, or a mixed solution of a photosensitive compound and nanocrystals surface-coordinated by a material miscible with the photosensitive compound, on a substrate, drying the coated substrate, and exposing the dried substrate to UV light to form a first monolayer of nanocrystals, and (ii) repeating the procedure of step (i) to form one or more monolayers of nanocrystals on the first monolayer of nanocrystals. Further, an organic-inorganic hybrid electroluminescence device using a multilayer of nanocrystals prepared by the method as a luminescent layer. The luminescent efficiency and luminescence intensity of the electroluminescence device can be enhanced, and the electrical properties of the electroluminescence device can be controlled by the use of the multilayer of nanocrystals as a luminescent layer.
摘要:
A nanocrystal electroluminescence device comprising a polymer hole transport layer, a nanocrystal light-emitting layer and an organic electron transport layer wherein the nanocrystal light-emitting layer is independently and separately formed between the polymer hole transport layer and the organic electron transport layer. According to the nanocrystal electroluminescence device, since the hole transport layer, the nanocrystal light-emitting layer and the electron transport layer are completely separated from one another, the electroluminescence device provides a pure nanocrystal luminescence spectrum having limited luminescence from other organic layers and substantially no influence by operational conditions, such as voltage. Further, a method for fabricating the nanocrystal electroluminescence device.
摘要:
A method for preparing cadmium sulfide nanocrystals emitting light at multiple wavelengths. The method comprises the steps of (a) mixing a cadmium precursor and a dispersant in a solvent that weakly coordinates to the cadmium precursor, and heating the mixture to obtain a cadmium precursor solution, (b) dissolving a sulfur precursor in a solvent that weakly coordinates to the sulfur precursor to obtain a sulfur precursor solution, and (c) feeding the sulfur precursor solution to the heated cadmium precursor solution maintained at a high temperature to prepare cadmium sulfide crystals, and growing the cadmium sulfide crystals. Further, cadmium sulfide nanocrystals prepared by the method. The cadmium sulfide nanocrystals have uniform size and shape and can emit light close to white light simultaneously at different wavelengths upon excitation. Due to these characteristics, the cadmium sulfide nanocrystals can be applied to white light-emitting diode devices.