摘要:
A monolithic, multi-color semiconductor light emitting diode (LED) is formed with a multi-bandgap, multi-quantum well (MQW) active light emitting region which emits light at spaced-apart wavelength bands or regions ranging from UV to red. The MQW active light emitting region comprises a MQW layer stack including n quantum barriers which space apart n−1 quantum wells. Embodiments include those wherein the MQW layer stack includes quantum wells of at least two different bandgaps for emitting light of two different wavelengths, e.g., in the blue or green regions and in at least one other region, and the intensities of the emissions are adjusted to provide a preselected color of combined light emission, preferably white light.
摘要:
A monolithic, multi-color semiconductor light emitting diode (LED) is formed with a multi-bandgap, multi-quantum well (MQW) active light emitting region which emits light at spaced-apart wavelength bands or regions ranging from UV to red. The MQW active light emitting region comprises a MQW layer stack including n quantum barriers which space apart n−1 quantum wells. Embodiments include those wherein the MQW layer stack includes quantum wells of at least two different bandgaps for emitting light of two different wavelengths, e.g., in the blue or green regions and in at least one other region, and the intensities of the emissions are adjusted to provide a preselected color of combined light emission, preferably white light.
摘要:
Compound semiconductor material is irradiated with x-ray radiation to activate a dopant material. Active carrier concentration efficiency may be improved over known methods, including conventional thermal annealing. The method may be employed for III-V group compounds, including GaN-based semiconductors, doped with p-type material to form low resistivity p-GaN. The method may be further employed to manufacture GaN-based LEDs, including blue LEDs, having improved forward bias voltage and light-emitting efficiency.
摘要:
A method and apparatus to manage the diffusion process by controlling the diffusion path in the semiconductor fabrication process is disclosed. In one embodiment, a method for processing a substrate comprising steps of forming one or more diffusion areas on said substrate; disposing the substrate in a diffusion chamber, wherein the diffusion chamber is under a vacuum condition and a source material therein is heated and evaporated; and diffusing the source material into the diffusion area on said substrate, wherein said source material travels through a diffusion controlling unit adapted to manage the flux thereof in the diffusion chamber, so concentration of the source material is uniform in a diffusion region above the substrate.
摘要:
A method for manufacturing an integrated avalanche photodetector comprising steps of providing a silicon-insulator substrate including a top layer, an insulator layer and a base layer; partially removing the top layer to form an optical waveguide over the insulator layer; forming an opening at least through the cladding layer and the insulator layer extending to a first portion of the base layer; and forming an avalanche photodetector over the first portion of the base layer at least in the opening and optically coupled to the waveguide. In one embodiment, the avalanche photodetector is butt-coupled to the optical waveguide. In another embodiment, the avalanche photodetector is evanescently coupled to the optical waveguide.
摘要:
A high-speed photodiode may include a photodiode structure having a substrate, a light-absorbing layer and a light-directing layer that is deposited on a top surface of the photodiode structure and patterned to form a textured surface used to change the angle of incident light to increase a light path of the incident light when entering the photodiode structure. In one embodiment, the light-directing layer may include a plurality of polygon such as triangular projections to refract the incident light to increase the light path thereof when entering the photodiode structure. In another embodiment, a plurality of nanoscaled sub-triangular projections can patterned on both sides of each triangular projection to more effectively increase the light paths. In a further embodiment, porous materials can be used to form the light-directing layer.
摘要:
A method for manufacturing an integrated photodetector may include steps of providing a silicon-insulator substrate including a top layer, an insulator layer, and a base layer; partially removing the top layer to form an optical waveguide over the insulator layer; forming an opening at least through the cladding layer and the insulator layer extending to a first portion of the base layer; and epitaxially growing a lattice-mismatched semiconductor layer over the first portion of the base layer at least in the opening, at least a portion of the semiconductor layer extending above the insulator layer to form a photodetector including an intrinsic region optically coupled to the waveguide. In one embodiment, the intrinsic region of the photodetector is butt-coupled to the optical waveguide. In another embodiment, the intrinsic region of the photodetector is evanescently coupled to the optical waveguide.
摘要:
A high-speed photodiode may include a photodiode structure having a substrate, a light-absorbing layer and a light-directing layer that is deposited on a top surface of the photodiode structure and patterned to form a textured surface used to change the angle of incident light to increase a light path of the incident light when entering the photodiode structure. In one embodiment, the light-directing layer may include a plurality of polygon such as triangular projections to refract the incident light to increase the light path thereof when entering the photodiode structure. In another embodiment, a plurality of nanoscaled sub-triangular projections can patterned on both sides of each triangular projection to more effectively increase the light paths. In a further embodiment, porous materials can be used to form the light-directing layer.
摘要:
A method and apparatus to manage the diffusion process by controlling the diffusion path in the semiconductor fabrication process is disclosed. In one embodiment, a method for processing a substrate comprising steps of forming one or more diffusion areas on said substrate; disposing the substrate in a diffusion chamber, wherein the diffusion chamber is under a vacuum condition and a source material therein is heated and evaporated; and diffusing the source material into the diffusion area on said substrate, wherein said source material travels through a diffusion controlling unit adapted to manage the flux thereof in the diffusion chamber, so concentration of the source material is uniform in a diffusion region above the substrate.
摘要:
The ring resonator includes waveguides configured to guide light signals. The waveguides include an input waveguide and one or more loop waveguides. One of the loop waveguides is a primary loop waveguide that is optically coupled with the input waveguide at a wavelength of light. A tuner is configured to tune the wavelength at which the light is optically coupled from the input waveguide into the primary loop waveguide. One or more light detectors are each configured to provide an output indicating an intensity of light guided in one of the one or more loop waveguides. Electronics are configured to tune the tuner in response to the output from the light detector.