摘要:
A D-E hysteresis loop of ferroelectrics known in the art has a square shape when the ferroelectrics are a BaTiO.sub.3 single crystal. Such ferroelectrics are used as a non-linear dielectric element of, for example a pulse generating device. The non-linear dielectric element according to the present invention consists of a polycrystal mainly composed of Ba(Ti.sub.0.90-0.98 Sn.sub.0.02-1.00)O.sub.3 and having an average grain diameter of from 10 to 60 .mu.m. The non-linearity is excellent and the temperature dependence of the non-linearity is considerably low.
摘要:
A D-E hysteresis loop of ferroelectrics known in the art has a square shape when the ferroelectrics are a BaTiO.sub.3 single crystal. Such ferroelectrics are used as a non-linear dielectric element of, for example a pulse generating device. The non-linear dielectric element according to the present invention consists of a polycrystal, which is mainly composed of BaTiO.sub.3 and has the chemical composition expressed by the formula A.sub.y B.sub.z O.sub.3, wherein the molar ratio of y/z ranges from 0.92 to 0.99. The non-linearity is excellent and the temperature dependence of the A.sub.y B.sub.z O.sub.3 composition is considerably low.
摘要:
To provide a thin-film capacitor capable of preventing the degradation of electrical characteristics caused by direct contact between an adhesion layer of a terminal electrode and a dielectric layer, to increase the reliability. The thin-film capacitor comprises: a dielectric layer deposited on a base electrode; an upper electrode layer deposited on the dielectric layer; a terminal electrode including an adhesion layer, a seed layer, and a plating layer; a resin layer for wiring provided between the upper electrode layer and the terminal electrode for isolating the upper electrode layer from the terminal electrode; and a wiring layer provided so as to extend through the resin layer for wiring in contact with the adhesion layer for electrically connecting the upper electrode layer and the terminal electrode, wherein a composition of the wiring layer differs from that of the adhesion layer of the terminal electrode, and wherein a reducing power of the wiring layer to the dielectric layer is smaller than that of the adhesion layer.
摘要:
A basic portion layer 21 of a substrate electrode 12a connected to a projecting electrode 13 electrically and mechanically on a substrate member of ceramics. The substrate member on which the basic portion layer 21 is formed is subjected to sintering. A surface of the basic portion layer 21 in the sintered substrate member is polished. On the polished basic portion layer 21, the plating layers 22, 23 are formed, so that surface roughness of the substrate electrode 12a may be, for example, not larger than 0.1 μmRMS. Accordingly, junction strength of an integrated circuit element mounted on a packaging substrate by a flip-chip method can be improved.
摘要:
To provide a thin-film capacitor capable of improving the stability of electric connection between an internal electrode layer and a connection electrode. The thin-film capacitor comprises: two or more dielectric layers deposited above a base electrode; an internal electrode layer being deposited between the dielectric layers and having a projecting portion which projects from the dielectric layer when seen from a laminating direction; and a connection electrode electrically connected to the internal electrode layer via at least a part of a surface and an end face of the internal electrode layer included in the projecting portion, wherein a ratio L/t between a projection amount L of the projecting portion of the internal electrode layer with respect to the dielectric layer and a thickness t of the internal electrode layer is 0.5 to 120.
摘要:
A thin-film capacitor that is less prone to generation of internal cracking or peeling is provided. In a thin-film capacitor according to the present embodiment, because through holes H are formed in internal electrodes containing Ni as a principal component in a lamination direction, a surface area of at least some of the through holes H is in the range of 0.19 μm2 to 7.0 μm2, and a ratio of a surface area of the through holes H to a surface area of an entire main surface of the internal electrodes is in the range of 0.05% to 5%, peeling or cracking is suppressed from occurring at the boundaries between the internal electrodes and dielectric layers, and as a result, the yield is enhanced.
摘要翻译:提供了不容易产生内部开裂或剥离的薄膜电容器。 在本实施方式的薄膜电容器中,由于在层叠方向上以Ni为主要成分的内部电极形成贯通孔H,所以贯通孔H的至少一部分的表面积为0.19 m 2〜7.0mum 2,通孔H的表面积与内部电极整个表面的表面积的比例在0.05〜5%的范围内,可以抑制剥离或开裂 内部电极和电介质层之间的边界,结果提高了产率。
摘要:
A method of manufacturing a thin film capacitor, having: a base electrode; dielectric layers consecutively deposited on the base electrode; an internal electrode deposited between the dielectric layers; an upper electrode deposited opposite the base electrode with the dielectric layers and the internal electrode being interposed therebetween; and a cover layer deposited on the upper electrode, has depositing an upper electrode layer which is to be the upper electrode, and a cover film which is to be the cover layer on the unsintered dielectric film which is to be the dielectric layer, to fabricate a lamination component, and sintering the lamination component.
摘要:
In a dielectric element, the side faces are roughened so that the surface roughness Ra is 15 nm or greater. By this means, the area of contact between a glass epoxy resin substrate and insulating material is increased, adhesion with resin substrates is improved, and strength and reliability can be enhanced when buried between two resin substrates. In the dielectric element, the surface roughness Ra of side surfaces is 5000 nm or less, so that when burying the dielectric element between a glass epoxy resin substrate and insulating material, the occurrence of air bubbles between the surface of the dielectric element and the resin can be prevented.
摘要:
A basic portion layer 21 of a substrate electrode 12a connected to a projecting electrode 13 electrically and mechanically on a substrate member of ceramics. The substrate member on which the basic portion layer 21 is formed is subjected to sintering. A surface of the basic portion layer 21 in the sintered substrate member is polished. On the polished basic portion layer 21, the plating layers 22, 23are formed, so that surface roughness of the substrate electrode 12a may be, for example, not larger than 0.1 μmRMS. Accordingly, junction strength of an integrated circuit element mounted on a packaging substrate by a flip-chip method can be improved.