Abstract:
The various structures forming communication paths on a printed circuit board can create several undesired effects, especially when high frequency signals are considered. Non-functional pads created during the manufacturing process have the potential to create an undesired effect, but when the overall collection of non-functional pads are carefully configured, an optimized communication path can be formed. More specifically, by selectively removing some collection of the non-functional pads, the high frequency characteristics of the communication paths can be optimized.
Abstract:
A printed wiring board is provided with a wiring layer, a first ground layer, a second ground layer, a grounding through-hole, a signal through-hole, a first clearance, and a second clearance. The wiring layer has a signal line. The first ground layer has a first ground plane. The second ground layer is positioned between the wiring layer and the first ground layer and has a second ground plane. The grounding through-hole passes through the wiring layer, the first ground layer, and the second ground layer and is connected to the second ground plane. The signal through-hole passes through the wiring layer, the first ground layer, and the second ground layer and is connected to the signal line. The first clearance is formed in the first ground layer, is positioned in the vicinity of the signal through-hole and the grounding through-hole, and separates the first ground plane from the signal through-hole and the grounding through-hole. The second clearance is formed in the second ground layer, is positioned in the vicinity of the signal through-hole, and separates the second ground plane from the signal through-hole.
Abstract:
A printed circuit board includes a plurality of layers including attachment layers and routing layers; and via patterns formed in the plurality of layers, each of the via patterns comprising: dual diameter first and second signal vias forming a differential signal pair, the first and second signal vias being configured to accept contact tails of signal conductors of a connector; dual diameter ground shadow vias adjacent to each of the first and second signal vias, wherein the dual diameter shadow ground vias have a reversed diameter configuration with respect to the dual diameter first and second signal vias; and ground vias configured to accept contact tails of ground conductors of the connector.
Abstract:
A printed wiring board comprises ground layers stacked via insulator(s); a first through hole; second through holes ; and signal wirings each extending from the first through hole through the clearance between predetermined ones of the ground layers, disposed between predetermined second through holes of the second through holes. Each of first clearances in the ground layers neighboring layer in which the signal wiring is disposed has an outline that a distance between the first through hole and outline of the first clearance is minimum of the signal wiring. Each of second clearances in the ground layers not adjacent to the signal wiring has an outline formed outside a circle connecting each center of second through holes centering the first signal through hole, such that outline of second clearance does not contact with the second through holes.
Abstract:
A direct current (DC) link capacitor module includes a printed circuit board (PCB) formed by sequentially disposing a first electrode substrate, an insulation substrate, a second electrode substrate, a third electrode substrate; a plurality of DC link capacitors connected in parallel to each of the first electrode substrate and the second electrode substrate; a plurality of first Y-capacitors connected in series to each of the first electrode substrate and the third electrode substrate, and connected in parallel to the DC link capacitors; and a plurality of second Y-capacitors connected in series to each of the first electrode substrate and the third electrode substrate, and connected in parallel to the first Y-capacitors, thereby achieving a miniaturization and facilitating a fabrication by connecting the plurality of DC link capacitors using the PCB.
Abstract:
A wiring board with built-in capacitors includes a core substrate, and a high dielectric sheet including a lower electrode layer, an upper electrode layer and a dielectric layer, the dielectric layer made of a sintered ceramic body and sandwiched between the lower electrode layer and the upper electrode layer, the lower electrode layer and/or the upper electrode layer being partitioned into multiple electrodes such that the high dielectric sheet has multiple capacitors. The lower electrode layer and/or the upper electrode layer is connected to a ground line and the other one of the lower electrode layer and the upper electrode layer is connected to a power line such that the capacitors are electrically connected in parallel.
Abstract:
A circuit may include a signal path, a first layer including the signal path, and a second layer including the signal path. The circuit may additionally include a path via having a signal-path via location and configured to connect the signal path at the first layer with the signal path at the second layer. The circuit may also include a ground plane associated with the first layer. The ground plane may have a ground-plane location that corresponds to the signal-path via location. The ground plane may also include an asymmetrical cutout portion that extends away from the ground-plane location on a first side of the ground plane that is opposite a second side of the ground plane that corresponds with a side of the first layer where the path via interfaces with the signal path at the first layer.
Abstract:
A circuit board comprises a plurality of layers, first and second reference conductive vias extending in a vertical direction through at least a portion of the plurality of layers, first and second signal conductive vias extending in the vertical direction between and spaced apart in a horizontal direction from the first and second reference conductive vias through at least a portion of the plurality of layers, and a dielectric region extending in the vertical direction between the first and second signal conductive vias. An air via extends in the vertical direction through the dielectric region between the first and second signal conductive vias. An anti-pad extends in the horizontal direction between the first and second reference conductive vias and surrounding in the horizontal direction the first and second signal conductive vias, the air via, and the dielectric region.
Abstract:
A multi layer interconnecting substrate has at least two spaced apart metal layers with a conductive pad on each one of the metal layers. Two different types of insulating layers are placed between the metal layers. The placement is such that one of the two different types of insulating layers is placed between the conductive pads and the other type of insulating layer is placed between the two spaced apart metal layers.
Abstract:
A printed circuit board for carrying high frequency signals. Conducting structures of the printed circuit board are shaped within breakout regions to limit impedance discontinuities in the signal paths between vias and conductive traces within the printed circuit board. Values of parameters of traces or anti-pads, for example, may be adjusted to provide a desired impedance. The specific values selected as part of designing a printed circuit board may match the impedance of the breakout region to that of the via. The parameters for which values are selected may include the trace width, thickness, spacing, length over an anti-pad or angle of exit from the breakout region.