摘要:
Continuous wave laser apparatus with enhanced processing efficiency is provided as well as a method of manufacturing a semiconductor device using the laser apparatus. The laser apparatus has: a laser oscillator; a unit for rotating a process object; a unit for moving the center of the rotation along a straight line; and an optical system for processing laser light that is outputted from the laser oscillator to irradiate with the laser light a certain region within the moving range of the process object. The laser apparatus is characterized in that the certain region is on a line extended from the straight line and that the position at which the certain region overlaps the process object is moved by rotating the process object while moving the center of the rotation along the straight line.
摘要:
Continuous wave laser apparatus with enhanced processing efficiency is provided as well as a method of manufacturing a semiconductor device using the laser apparatus. The laser apparatus has: a laser oscillator; a unit for rotating a process object; a unit for moving the center of the rotation along a straight line; and an optical system for processing laser light that is outputted from the laser oscillator to irradiate with the laser light a certain region within the moving range of the process object. The laser apparatus is characterized in that the certain region is on a line extended from the straight line and that the position at which the certain region overlaps the process object is moved by rotating the process object while moving the center of the rotation along the straight line.
摘要:
Continuous wave laser apparatus with enhanced processing efficiency is provided as well as a method of manufacturing a semiconductor device using the laser apparatus. The laser apparatus has: a laser oscillator; a unit for rotating a process object; a unit for moving the center of the rotation along a straight line; and an optical system for processing laser light that is outputted from the laser oscillator to irradiate with the laser light a certain region within the moving range of the process object. The laser apparatus is characterized in that the certain region is on a line extended from the straight line and that the position at which the certain region overlaps the process object is moved by rotating the process object while moving the center of the rotation along the straight line.
摘要:
Continuous wave laser apparatus with enhanced processing efficiency is provided as well as a method of manufacturing a semiconductor device using the laser apparatus. The laser apparatus has: a laser oscillator; a unit for rotating a process object; a unit for moving the center of the rotation along a straight line; and an optical system for processing laser light that is outputted from the laser oscillator to irradiate with the laser light a certain region within the moving range of the process object. The laser apparatus is characterized in that the certain region is on a line extended from the straight line and that the position at which the certain region overlaps the process object is moved by rotating the process object while moving the center of the rotation along the straight line.
摘要:
Island-like semiconductor films and markers are formed prior to laser irradiation. Markers are used as positional references so as not to perform laser irradiation all over the semiconductor within a substrate surface, but to perform a minimum crystallization on at least indispensable portion. Since the time required for laser crystallization can be reduced, it is possible to increase the substrate processing speed. By applying the above-described constitution to a conventional SLS method, a means for solving such problem in the conventional SLS method that the substrate processing efficiency is insufficient, is provided.
摘要:
To provide a continuous-oscillating laser apparatus capable of improving the efficiency of substrate treatment, a method of irradiating a laser beam, and a method of manufacturing a semiconductor device using the laser apparatus. Of the entire semiconductor film, a portion that needs to be left on the substrate after patterning is identified according to a mask. Then, a portion to be scanned by respective lasers are defined, so that a laser beam is irradiated twice in different scanning directions to a portion to be obtained at least through patterning and beam spots are impinged upon the scanned portion, thereby partially crystallizing the semiconductor film. In other words, in the invention, it is arranged in such a manner that a laser beam is not irradiated by scanning a laser beam across the entire semiconductor film but by scanning a laser beam twice at least to the absolutely necessary portion. According to the above arrangement, it is possible to save the time to irradiate a laser beam in waste to the semiconductor film at a portion to be removed through patterning, and the crystalline characteristics of the semiconductor film obtained after the patterning can be further enhanced.
摘要:
Position control of a crystal grain in accordance with an arrangement of a TFT is achieved, and at the same time, a processing speed during a crystallization process is increased. More specifically, there is provided a manufacturing method for a semiconductor device, in which crystal having a large grain size can be continuously formed through super lateral growth that is artificially controlled and substrate processing efficiency during a laser crystallization process can be increased. In the manufacturing method for a semiconductor device, instead of performing laser irradiation on an entire semiconductor film within a substrate surface, a marker as a reference for positioning is formed so as to crystallize at least an indispensable portion at minimum. Thus, a time period required for laser crystallization can be reduced to make it possible to increase a processing speed for a substrate. The above structure is applied to a conventional SLS method, so that it is possible to solve a problem inherent to the conventional SLS method, in that the substrate processing efficiency is poor.
摘要:
Position control of a crystal grain in accordance with an arrangement of a TFT is achieved, and at the same time, a processing speed during a crystallization process is increased. More specifically, there is provided a manufacturing method for a semiconductor device, in which crystal having a large grain size can be continuously formed through super lateral growth that is artificially controlled and substrate processing efficiency during a laser crystallization process can be increased. In the manufacturing method for a semiconductor device, instead of performing laser irradiation on an entire semiconductor film within a substrate surface, a marker as a reference for positioning is formed so as to crystallize at least an indispensable portion at minimum. Thus, a time period required for laser crystallization can be reduced to make it possible to increase a processing speed for a substrate. The above structure is applied to a conventional SLS method, so that it is possible to solve a problem inherent to the conventional SLS method, in that the substrate processing efficiency is poor.
摘要:
Island-like semiconductor films and markers are formed prior to laser irradiation. Markers are used as positional references so as not to perform laser irradiation all over the semiconductor within a substrate surface, but to perform a minimum crystallization on at least indispensable portion. Since the time required for laser crystallization can be reduced, it is possible to increase the substrate processing speed. By applying the above-described constitution to a conventional SLS method, a means for solving such problem in the conventional SLS method that the substrate processing efficiency is insufficient, is provided.
摘要:
To provide a continuous oscillation laser apparatus, and a manufacturing method of a semiconductor device using the continuous oscillation laser apparatus, which can enhance processing efficiency. A laser apparatus according to the present invention includes: a laser oscillation apparatus; a unit for rotating an object to be processed; a unit for moving the object to be processed toward a center of the rotation or toward an outside from the center; and an optical system for processing a laser light outputted from the laser oscillation apparatus and irradiating the processed laser light to a definite region in a moving range of the object to be processed, in which, while the object to be processed is rotated, the object to be processed is moved toward the center of the rotation or toward the outside from the center to move a position where the definite region and the object to be processed overlap.