摘要:
A single crystal semiconductor separated from a single crystal semiconductor substrate is formed partly over a supporting substrate with a buffer layer provided therebetween. The single crystal semiconductor is separated from the single crystal semiconductor substrate by irradiation with accelerated ions, formation of a fragile layer by the ion irradiation, and heat treatment. A non-single crystal semiconductor layer is formed over the single crystal semiconductor and irradiated with a laser beam to be crystallized, whereby an SOI substrate is manufactured.
摘要:
A single crystal semiconductor separated from a single crystal semiconductor substrate is formed partly over a supporting substrate with a buffer layer provided therebetween. The single crystal semiconductor is separated from the single crystal semiconductor substrate by irradiation with accelerated ions, formation of a fragile layer by the ion irradiation, and heat treatment. A non-single crystal semiconductor layer is formed over the single crystal semiconductor and irradiated with a laser beam to be crystallized, whereby an SOI substrate is manufactured.
摘要:
To provide a method for manufacturing an SOI substrate provided with a semiconductor layer which can be used practically even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like is used. The semiconductor layer is transferred to a supporting substrate by the steps of irradiating a semiconductor wafer with ions from one surface to form a damaged layer; forming an insulating layer over one surface of the semiconductor wafer; attaching one surface of the supporting substrate to the insulating layer formed over the semiconductor wafer and performing heat treatment to bond the supporting substrate to the semiconductor wafer; and performing separation at the damaged layer into the semiconductor wafer and the supporting substrate. The damaged layer remaining partially over the semiconductor layer is removed by wet etching and a surface of the semiconductor layer is irradiated with a laser beam.
摘要:
The present invention provides a method for manufacturing an SOI substrate, to improve planarity of a surface of a single crystal semiconductor layer after separation by favorably separating a single crystal semiconductor substrate even in the case where a non-mass-separation type ion irradiation method is used, and to improve planarity of a surface of a single crystal semiconductor layer after separation as well as to improve throughput. The method includes the steps of irradiating a single crystal semiconductor substrate with accelerated ions by an ion doping method while the single crystal semiconductor substrate is cooled to form an embrittled region in the single crystal semiconductor substrate; bonding the single crystal semiconductor substrate and a base substrate with an insulating layer interposed therebetween; and separating the single crystal semiconductor substrate along the embrittled region to form a single crystal semiconductor layer over the base substrate with the insulating layer interposed therebetween.
摘要:
This invention provides a semiconductor device having high operation performance and high reliability. An LDD region 707 overlapping with a gate wiring is arranged in an n-channel TFT 802 forming a driving circuit, and a TFT structure highly resistant to hot carrier injection is achieved. LDD regions 717, 718, 719 and 720 not overlapping with a gate wiring are arranged in an n-channel TFT 804 forming a pixel unit. As a result, a TFT structure having a small OFF current value is achieved. In this instance, an element belonging to the Group 15 of the Periodic Table exists in a higher concentration in the LDD region 707 than in the LDD regions 717, 718, 719 and 720.
摘要:
A first substrate of single-crystal silicon within which is formed an embrittled layer and over a surface of which is formed a first insulating film is provided; a second insulating film is formed over a surface of a second substrate; at least one surface of either the first insulating film or the second insulating film is exposed to a plasma atmosphere or an ion atmosphere, and that surface of the first insulating film or the second insulating film is activated; the first substrate and the second substrate are bonded together with the first insulating film and the second insulating film interposed therebetween; a single-crystal silicon film is separated from the first substrate at an interface of the embrittled layer of the first substrate, and a thin film single-crystal silicon film is formed over the second substrate with the first insulating film and the second insulating film interposed therebetween.
摘要:
The method includes steps of adding first ions to a predetermined depth from a main surface of a semiconductor substrate by irradiation of the semiconductor substrate with a planar, linear, or rectangular ion beam, so that a separation layer is formed; adding second ions to part of the separation layer formed in the semiconductor substrate; disposing the main surface of the semiconductor substrate and a main surface of a base substrate to face each other in order to bond a surface of an insulating film and the base substrate; and cleaving the semiconductor substrate using the separation layer as a cleavage plane, so that a single crystal semiconductor layer is formed over the base substrate. The mass number of the second ions is the same as or larger than that of the first ions.
摘要:
A method is demonstrated to manufacture SOI substrates with high throughput while resources can be effectively used. The present invention is characterized by the feature in which the following process A and process B are repeated. The process A includes irradiation of a surface of a semiconductor wafer with cluster ions to form a separation layer in the semiconductor wafer. The semiconductor wafer and a substrate having an insulating surface are then overlapped with each other and bonded, which is followed by thermal treatment to separate the semiconductor wafer at or around the separation layer. A separation wafer and an SOT substrate which has a crystalline semiconductor layer over the substrate having the insulating surface are simultaneously obtained by the process A. The process B includes treatment of the separation wafer for reusing, which allows the separation wafer to be successively subjected to the process A.
摘要:
An embrittlement layer is formed in a single crystal semiconductor substrate having a (110) plane as a main surface by irradiation of the main surface with ions, and an insulating layer is formed over the main surface of the single crystal semiconductor substrate. The insulating layer and a substrate having an insulating surface are bonded, and the single crystal semiconductor substrate is separated along the embrittlement layer to provide a single crystal semiconductor layer having the (110) plane as a main surface over the substrate having the insulating surface. Then, an n-channel transistor and a p-channel transistor are formed so as to each have a axis of the single crystal semiconductor layer in a channel length direction.
摘要:
A semiconductor substrate and a base substrate made from an insulator are prepared; an oxide film containing a chlorine atom is formed over the semiconductor substrate; the semiconductor substrate is irradiated with accelerated ions through the oxide film to form an embrittled region at a predetermined depth from a surface of the semiconductor substrate; plasma treatment of the oxide film is performed by applying a bias voltage; a surface of the semiconductor substrate and a surface of the base substrate are disposed opposite to each other to bond a surface of the oxide film and the surface of the base substrate to each other; and heat treatment is performed to cause separation along the embrittled region after bonding the surface of the oxide film and the surface of the base substrate to each other, thereby forming a semiconductor film over the base substrate with the oxide film interposed therebetween.