摘要:
The present invention pertains to vectors for regulating gene expression having at least one gene expressing cassette and at least one gene suppressing cassette, wherein the gene expression cassette encodes a polypeptide of interest, and wherein the gene suppressing cassette encodes a short interfering RNA (siRNA) molecule that reduces expression of a target gene by RNA interference. The present invention further includes vectors that contain suppressor cassettes in conjunction with cassettes upregulating gene expression regulated by either a constitutive promoter, such as a general CMV promoter, or a tissue specific promoter. The present invention further includes vectors that contain Dengue virus gene suppression cassettes. The present invention further includes pharmaceutical compositions containing such vectors, methods of modulating the expression of genes in a host using such vectors, and method of producing such vectors.
摘要:
Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.
摘要:
A novel SH-SAW biosensor capable of non-invasive and touch-free detection of cancer cell viability and growth or proliferation in two-dimensional (2D) and three-dimensional (3D) cell cultures as well as stem cell regeneration as it pertains to cancer cell biology and anti-cancer drug development is presented. The biosensor includes two pairs of resonators including interdigital transducers reflecting fingers to quantify mass loading by the cells in suspension as well as within a tumoroid culture platform. The biosensor can be part of a perfused 3PNS-tumoroid system that is amenable to real-time non-invasive monitoring of the cell proliferation, viability, and multiplexed detection of key physiologic and clinical biomarkers.
摘要:
Provided are methods of treating an inflammatory disease in a subject in need thereof by administering an amount of microRNA 142, an amount of microRNA 223 or an amount of microRNA 142 and an amount of micro RNA 223 to the subject in need thereof.
摘要:
Provided herein is a three-dimensional scaffold composition comprising randomly oriented fibers, wherein the fibers comprise a polyethylene glycol-polylactic acid block copolymer (PEG-PLA) and a poly(lactic-co-glycolic acid) (PLGA). Also provided are methods for using the three-dimensional scaffolds described herein.
摘要:
A method of delivering a compound of interest to the lungs of a subject by the intravenous injection of Sertoli cells loaded with a plurality of chitosan nanoparticles coupled with the compound of interest is provided. Testis-derived rat Sertoli cells were pre-loaded with chitosan nanoparticles coupled with or without the drug curcumin, pre-labeled with a fluorescent cell marker and then injected intravenously into the control or asthmatic mouse model host. Intact pre-loaded, pre-labeled Sertoli cells were present in the lungs at 15 minutes post-injection, appeared entrapped in the pulmonary pre-capillary vascular bed around alveolar sacs but were not present one hour post-injection although Sertoli cell label and cellular debris was. Most of the injected nanoparticle load (70%) and curcumin load (80%) was present in the lungs 15 minutes post-injection, and remained at 70% and 80%, respectively, one hour post-injection.
摘要:
Provided herein is a method for detecting mutations in polynucleotide sequences through the use of a glassy carbon electrode (GCE) coated with a chitosan-graphene nanosheet material (also referred to herein as a “CMG electrode.”) It is a surprising finding of the present invention that the CMG electrodes can be used to detect non-hybridization of capture and target polynucleotides using voltammetry, wherein non-hybridization indicates a mutation or difference in the target polynucleotide as compared to a control.
摘要:
The present invention provides materials and methods for detecting, quantifying, and/or high-throughput-profiling microRNAs. Advantageously, the present invention is more sensitive and specific than other currently-available miRNA qPCR assays. In addition, the present invention is convenient, easy-to-perform, and cost-effective. In one embodiment, the present invention provides a universal primer for reverse transcription of all miRNAs, a universal reverse primer for PCR amplification reaction, and universal probes. In another embodiment, the present invention provides assays that allow simultaneous detection and/or quantification of a plurality of target miRNAs using a single reverse transcription reaction.
摘要:
A drug delivery device has been designed to directly deliver an agent to the ovaries through direct contact with the fallopian tubes. The device consists of three main components: a tubular inserter, a cylindrical chamber and a plunger. The device is a single-use applicator designed in a shape similar to a tampon to facilitate its insertion through the vagina and into the uterus. Positioning of the device centrally in the uterus is accomplished through the use of ultrasound. The chamber is inserted into the tubular inserter. Adjusting the length of the chamber inserted into the tubular inserter controls the amount of tubing released from the apertures in the tubular inserter. Ultrasound is used to ensure the proper placement of each tube at the entrance of each fallopian tube. The plunger is inserted into the chamber and adjustment of the plunger controls the amount of the agent released into the tubes.
摘要:
The subject invention pertains to the development of a novel human mast cell line, USF-MC1. USF-MC1 is a mast cell precursor present in human umbilical cord blood (HUCB) that may be sustained in culture in the absence of exogenous cytokines to serve as a convenient experimental model of human mast cell activation. The SCF-independent human mast cell line USF-MC1 responds to IgE-mediated and IgE-independent stimuli in a way comparable to that of LAD2. USF-MC1 cells are useful for investigation of IgE-mediated activation mechanisms of human mast cells, contributing to the development of effective treatments for allergic disorders and other disorders. The subject invention provides a ready source of human mast cells for research, including pharmacological studies for the screening of various agents, and toxicologic, e.g., for the cosmetic and pharmaceutical industries. The mast cells can also be used as biofactories, for the large-scale production of biomolecules.