摘要:
A system, in one embodiment, includes an optical coherence tomography (OCT) imaging system having a light source configured to emit light. The OCT imaging system further includes a beam splitter configured to receive the light from the light source, split the light into a first light portion directed along a sample arm comprising a sample and a second light portion directed along a reference arm comprising a reference mirror, receive a first reflected light portion from the sample arm and a second reflected light portion from the reference arm, combine the first and second reflected light portions to obtain an interference signal. Further, the OCT imaging system includes a controller having logic configured to perform an auto-ranging process to match the reference arm with the sample arm.
摘要:
A system, in one embodiment, includes an optical coherence tomography (OCT) imaging system having a light source configured to emit light. The OCT imaging system further includes a beam splitter configured to receive the light from the light source, split the light into a first light portion directed along a sample arm comprising a sample and a second light portion directed along a reference arm comprising a reference mirror, receive a first reflected light portion from the sample arm and a second reflected light portion from the reference arm, combine the first and second reflected light portions to obtain an interference signal. Further, the OCT imaging system includes a controller having logic configured to perform an auto-ranging process to match the reference arm with the sample arm.
摘要:
A system, in one embodiment, includes an optical coherence tomography (OCT) imaging system having a light source configured to emit light. The OCT imaging system further includes a beam splitter configured to receive the light from the light source, split the light into a first light portion directed along a sample arm comprising a sample and a second light portion directed along a reference arm comprising a reference mirror, receive a first reflected light portion from the sample arm and a second reflected light portion from the reference arm, combine the first and second reflected light portions to obtain an interference signal at a detector. Further, the OCT imaging system includes a controller having logic configured to perform an auto-focusing process to determine the optimal position for a lens in the sample arm in order to bring the sample into focus.
摘要:
A system, in one embodiment, includes an optical coherence tomography (OCT) imaging system having a light source configured to emit light. The OCT imaging system further includes a beam splitter configured to receive the light from the light source, split the light into a first light portion directed along a sample arm comprising a sample and a second light portion directed along a reference arm comprising a reference mirror, receive a first reflected light portion from the sample arm and a second reflected light portion from the reference arm, combine the first and second reflected light portions to obtain an interference signal at a detector. Further, the OCT imaging system includes a controller having logic configured to perform an auto-focusing process to determine the optimal position for a lens in the sample arm in order to bring the sample into focus.
摘要:
A system for delivering exogenous molecules comprises a support for containing cells and exogenous molecules; an infra-red (IR) light source that generates an IR optical beam with an average power density at least greater than 105 W/cm2; one or more optical elements; an imaging system to image the cells in a field of view; a processor that generates a signal for localization of cells in the field of view; a light pattern shaper for temporal focusing of optical beam to generate wide field illumination on the cells to permeabilise the cell membrane for delivering the exogenous molecules; and a controller that switches optical beam from wide field illumination to a focused illumination. The processor is operatively coupled to the imaging system and the light pattern shaper and transmits the signal for the localization of cells to ensure the temporal focusing of the optical beam on the cells.
摘要:
A method of delivering exogenous molecules, comprising: providing a plurality of cells having a cell membrane; adding a plurality of exogenous molecules to the cells; exposing the cells to a defocused infrared (IR) light to permeabilize the cell membrane of the cells; and delivering the exogenous molecules to the cells through the permeablized cell membrane, wherein an intensity of the IR light at the optical focus is at least greater than or equal to an order of 104 W/cm2.
摘要翻译:一种递送外源性分子的方法,包括:提供多个具有细胞膜的细胞; 向细胞中加入多种外源性分子; 将细胞暴露于散焦的红外(IR)光以使细胞的细胞膜透化; 并且通过透过细胞膜将外源性分子递送至细胞,其中所述光学焦点处的IR光的强度至少大于或等于104W / cm 2。
摘要:
A method of delivering exogenous molecules, comprising: providing a plurality of cells having a cell membrane; adding a plurality of exogenous molecules to the cells; exposing the cells to a defocused infrared (IR) light to permeabilize the cell membrane of the cells; and delivering the exogenous molecules to the cells through the permeablized cell membrane, wherein an intensity of the IR light at the optical focus is at least greater than or equal to an order of 104 W/cm2.
摘要翻译:一种递送外源性分子的方法,包括:提供多个具有细胞膜的细胞; 向细胞中加入多种外源性分子; 将细胞暴露于散焦的红外(IR)光以使细胞的细胞膜透化; 并且通过透过细胞膜将外源性分子递送至细胞,其中所述光学焦点处的IR光的强度至少大于或等于104W / cm 2。
摘要:
Some systems described herein include a frequency dependent phase plate for generating multiple phase-contrast images of a sample, each from a different frequency range of light, each phase-contrast image for frequency range of light formed from light diffracted by the sample interfered with undiffracted light that has a frequency-dependent baseline relative phase shift from the phase plate. In some embodiments, the multiple phase-contrast images may be used to generate a quantitative phase image of a sample. The phase-contrast images or the produced quantitative phase image may have sufficient contrast for label-free auto-segmentation of cell bodies and nuclei.
摘要:
Lighting system embodiments are provided to energize and calibrate strings of light-emitting diodes. These embodiments are particularly useful for calibration of strings of light-emitting diodes that are arranged to provide backlighting of liquid crystal displays. The systems are structured around the use of a single comparator that is multiplexed to facilitate calibration of a plurality of current sources. The systems can be adapted for use in displays in which different techniques (e.g., “analog dimming” and “pulse-width modulation”) are used to vary the brightness of the display. The systems remove the need for special structures (e.g., fuse arrays, special test equipment, and interfaces).
摘要:
Systems and methods described herein employ multiple phase-contrast images with various relative phase shifts between light diffracted by a sample and light not diffracted by the sample to produce a quantitative phase image. The produced quantitative phase image may have sufficient contrast for label-free auto-segmentation of cell bodies and nuclei.