CONDUCTIVE PASTE FOR SEMICONDUCTOR DEVICE AND PREPARATION METHOD

    公开(公告)号:US20200286642A1

    公开(公告)日:2020-09-10

    申请号:US16840344

    申请日:2020-04-04

    Abstract: A front-side conductive paste for a crystalline silicon solar cell chip is provided. The front-side conductive paste for a crystalline silicon solar cell chip includes, in parts by weight, 80.0-93.0 parts of a metal powder, 6.0-15.0 parts of an organic carrier, and 1.0-5.0 parts of an oxide etching agent. The oxide etching agent contains at least 10-40% of MgO, 0.1-5% of PbO, and 5-30% of Li2O based on 100% by mole, with the molar ratio of MgO:PbO being 10:5˜40:0.1, and the mole ratio of MgO:Li2O being 10:30˜40:5. The metal powder forms good ohmic contact with crystalline silicon substrate during the sintering process of the front-side conductive paste applied overlying an insulation film on the substrate. Finally, a front-side electrode of low contact resistance, good electrical conductivity, and strong adhesion is obtained.

    Conductive paste for semiconductor device and preparation method

    公开(公告)号:US10658090B2

    公开(公告)日:2020-05-19

    申请号:US16297620

    申请日:2019-03-09

    Abstract: A front-side conductive paste for a crystalline silicon solar cell chip is provided. The front-side conductive paste for a crystalline silicon solar cell chip includes, in parts by weight, 80.0-93.0 parts of a metal powder, 6.0-15.0 parts of an organic carrier, and 1.0-5.0 parts of an oxide etching agent. The oxide etching agent contains at least 10-40% of MgO, 0.1-5% of PbO, and 5-30% of Li2O based on 100% by mole, with the molar ratio of MgO:PbO being 10:5˜40:0.1, and the mole ratio of MgO:Li2O being 10:30˜40:5. The metal powder forms good ohmic contact with crystalline silicon substrate during the sintering process of the front-side conductive paste applied overlying an insulation film on the substrate. Finally, a front-side electrode of low contact resistance, good electrical conductivity, and strong adhesion is obtained.

    MODIFIED EPOXY ACRYLATE RESIN CONDUCTIVE ADHESIVE AND PREPARATION METHOD AND APPLICATION THEREOF

    公开(公告)号:US20220340794A1

    公开(公告)日:2022-10-27

    申请号:US17413565

    申请日:2020-01-17

    Abstract: A modified epoxy acrylic resin conductive adhesive is disclosed, based on 100 parts by total mass, including the following components: 49-75 parts of conductive particles, 24-45 parts of modified epoxy propylene resin, 0.5-2.5 parts of silane coupling agent, and 0.5-3.0 parts of initiator. The conductive particles include at least 5% conductive particles with a three-dimensional dendritic microstructure among all the conductive particles. A preparation method and application of the modified epoxy acrylic resin conductive adhesive are disclosed. The modified epoxy acrylic resin conductive adhesive of the present disclosure has advantages in good electrical conductivity, short curing time, strong adhesion, and capability being used for a long-time room temperature operation.

    ACRYLIC CONDUCTIVE PASTE FOR SEMICONDUCTOR DEVICE AND METHODS

    公开(公告)号:US20220351876A1

    公开(公告)日:2022-11-03

    申请号:US17413563

    申请日:2020-01-17

    Abstract: An acrylic conductive paste is provided, based on 100 parts by weight, including: 30-84 parts of conductive particles, 15˜45 parts of acrylate, 0.5˜2.5 parts of adhesion promoter, 0.5˜3 parts of initiator. The conductive particles include three-dimensional dendritic conductive particles; and the adhesion promoter is a mixture of a silane coupling agent and a phosphate ester. The conductive paste of the present disclosure has good electrical conductivity, short curing time, strong adhesion, and can be used for a long-time room temperature operation. The present disclosure also provides a method for preparing the above-mentioned acrylic conductive paste, which is convenient for operation and industrial application; at the same time, it shows that the acrylic conductive paste of the present disclosure can be applied to semiconductor components for packaging a semiconductor device.

    Conductive paste for semiconductor device and preparation method

    公开(公告)号:US10902971B2

    公开(公告)日:2021-01-26

    申请号:US16840344

    申请日:2020-04-04

    Abstract: A front-side conductive paste for a crystalline silicon solar cell chip is provided. The front-side conductive paste for a crystalline silicon solar cell chip includes, in parts by weight, 80.0-93.0 parts of a metal powder, 6.0-15.0 parts of an organic carrier, and 1.0-5.0 parts of an oxide etching agent. The oxide etching agent contains at least 10-40% of MgO, 0.1-5% of PbO, and 5-30% of Li2O based on 100% by mole, with the molar ratio of MgO:PbO being 10:5˜40:0.1, and the mole ratio of MgO:Li2O being 10:30˜40:5. The metal powder forms good ohmic contact with crystalline silicon substrate during the sintering process of the front-side conductive paste applied overlying an insulation film on the substrate. Finally, a front-side electrode of low contact resistance, good electrical conductivity, and strong adhesion is obtained.

    FRONT-SIDE CONDUCTIVE PASTE FOR CRYSTALLINE SILICON SOLAR CELL, PREPARATION METHOD THEREFOR, AND SOLAR CELL

    公开(公告)号:US20190305150A1

    公开(公告)日:2019-10-03

    申请号:US16254977

    申请日:2019-01-23

    Abstract: A front-side conductive paste for a crystalline silicon solar cell is provided. The front-side conductive paste for a crystalline silicon solar cell includes, in parts by weight, 80.0-93.0 parts of a metal powder, 6.0-15.0 parts of an organic carrier, and 1.0-5.0 parts of an oxide etching agent, where based on 100% by mole of the oxide etching agent, the oxide etching agent includes 15-30% of PbO; 25-40% of TeO2; 8.0-15.0% of Li2O; 9.0-20.0% of SiO2; 5.0-15.0% of Bi2O3; 0.5-10.0% of ZnO; and either one or both of 0.1-10.0% of MgO and 0.1-10.0% of CaO; and no more than 5.0% of an oxide of additional metal elements. The metal powder forms good ohmic contact with crystalline silicon substrate during the sintering process of the front-side conductive paste applied overlying an insulation film on the substrate. Finally, a front-side electrode of low contact resistance, good electrical conductivity, and strong adhesion is obtained.

Patent Agency Ranking