Abstract:
An optical device includes a light source with at least two radiation sources, and at least two layers of wavelength-modifying materials excited by the radiation sources that emit radiation in at least two predetermined wavelengths. Embodiments include a first plurality of n radiation sources configured to emit radiation at a first wavelength. The first plurality of radiation sources are in proximity to a second plurality of m of radiation sources configured to emit radiation at a second wavelength, the second wavelength being shorter than the first wavelength. The ratio between m and n is predetermined. The disclosed optical device also comprises at least two wavelength converting layers such that a first wavelength converting layer is configured to absorb a portion of radiation emitted by the second radiation sources, and a second wavelength converting layer configured to absorb a portion of radiation emitted by the second radiation sources.
Abstract:
High quality ammonothermal group III metal nitride crystals having a pattern of locally-approximately-linear arrays of threading dislocations, methods of manufacturing high quality ammonothermal group III metal nitride crystals, and methods of using such crystals are disclosed. The crystals are useful for seed bulk crystal growth and as substrates for light emitting diodes, laser diodes, transistors, photodetectors, solar cells, and for photoelectrochemical water splitting for hydrogen generation devices.
Abstract:
An optical device includes a light source with at least two radiation sources, and at least two layers of wavelength-modifying materials excited by the radiation sources that emit radiation in at least two predetermined wavelengths. Embodiments include a first plurality of n radiation sources configured to emit radiation at a first wavelength. The first plurality of radiation sources are in proximity to a second plurality of m of radiation sources configured to emit radiation at a second wavelength, the second wavelength being shorter than the first wavelength. The ratio between m and n is predetermined. The disclosed optical device also comprises at least two wavelength converting layers such that a first wavelength converting layer is configured to absorb a portion of radiation emitted by the second radiation sources, and a second wavelength converting layer configured to absorb a portion of radiation emitted by the second radiation sources.