摘要:
A method of forming a retrograde well in a transistor is provided. A transistor structure having a substrate, a gate, and a gate oxide layer between the substrate and the gate is formed. The substrate includes a channel region located generally below the gate. A first dopant is implanted into the channel region. A second dopant is implanted into the substrate to form a doped source region and a doped drain region. A third dopant is implanted into the gate oxide layer. A source/drain anneal is performed to form a source and a drain in the doped source region and the doped drain region, respectively. The source/drain anneal causes a portion of the first dopant in the channel region to be attracted by the third dopant into the gate oxide layer.
摘要:
A method of forming a retrograde well in a transistor is provided. A transistor structure having a substrate, a gate, and a gate oxide layer between the substrate and the gate is formed. The substrate includes a channel region located generally below the gate. A first dopant is implanted into the channel region. A second dopant is implanted into the substrate to form a doped source region and a doped drain region. A third dopant is implanted into the gate oxide layer. A source/drain anneal is performed to form a source and a drain in the doped source region and the doped drain region, respectively. The source/drain anneal causes a portion of the first dopant in the channel region to be attracted by the third dopant into the gate oxide layer.
摘要:
A method is disclosed for implanting and activating antimony as a dopant in a semiconductor substrate. A method is also disclosed for implanting and activating antimony to form a source/drain extension region in the formation of a transistor, in such a manner as to achieve high activation and avoid deactivation via subsequent exposure to high temperatures. This technique facilitates the formation of very thin source/drain regions that exhibit reduced sheet resistance while also suppressing short channel effects. Enhancements to these techniques are also suggested for more precise implantation of antimony to create a shallower source/drain extension, and to ensure formation of the source/drain extension region to underlap the gate. Also disclosed are transistors and other semiconductor components that include doped regions comprising activated antimony, such as those formed according to the disclosed methods.
摘要:
A method of forming a transistor comprising forming a gate structure over an n-type semiconductor body and forming recesses substantially aligned to the gate structure in the semiconductor body. Silicon germanium is then epitaxially grown in the recesses and a silicon cap layer is formed over the silicon germanium. Further introduction of impurities into the silicon germanium to increase the melting point thereof and implanting p-type source/drain regions in the semiconductor body is included in the method. The method concludes with performing a high temperature thermal treatment.
摘要:
The present invention provides, in one aspect, a method of fabricating a gate oxide layer on a microelectronics substrate. This embodiment comprises forming a stress inducing pattern on a backside of a microelectronics wafer and growing a gate oxide layer on a front side of the microelectronics wafer in the presence of a tensile stress caused by the stress inducing pattern.
摘要:
A transistor is fabricated upon a semiconductor substrate, where the yield strength or elasticity of the substrate is enhanced or otherwise adapted. A strain inducing layer is formed over the transistor to apply a strain thereto to alter transistor operating characteristics, and more particularly to enhance the mobility of carriers within the transistor. Enhancing carrier mobility allows transistor dimensions to be reduced while also allowing the transistor to operate as desired. However, high strain and temperature associated with fabricating the transistor result in deleterious plastic deformation. The yield strength of the silicon substrate is therefore adapted by incorporating nitrogen into the substrate, and more particularly into source/drain extension regions and/or source/drain regions of the transistor. The nitrogen can be readily incorporated during transistor fabrication by adding it as part of source/drain extension region formation and/or source/drain region formation. The enhanced yield strength of the substrate mitigates plastic deformation of the transistor due to the strain inducing layer.
摘要:
A method is disclosed for doping a target area of a semiconductor substrate, such as a source or drain region of a transistor, with an electronically active dopant (such as an N-type dopant used to create active areas in NMOS devices, or a P-type dopant used to create active areas in PMOS devices) having a well-controlled placement profile and strong activation. The method comprises placing a carbon-containing diffusion suppressant in the target area at approximately 50% of the concentration of the dopant, and activating the dopant by an approximately 1,040 degree Celsius thermal anneal. In many cases, a thermal anneal at such a high temperature induces excessive diffusion of the dopant out of the target area, but this relative concentration of carbon produces a heretofore unexpected reduction in dopant diffusion during such a high-temperature thermal anneal. The disclosure also pertains to semiconductor components produced in this manner, and various embodiments and improvements of such methods for producing such components.
摘要:
The present invention provides, in one aspect, a method of fabricating a gate oxide layer on a microelectronics substrate. This embodiment comprises forming a stress inducing pattern on a backside of a microelectronics wafer and growing a gate oxide layer on a front side of the microelectronics wafer in the presence of a tensile stress caused by the stress inducing pattern.
摘要:
A method is disclosed for implanting and activating antimony as a dopant in a semiconductor substrate. A method is also disclosed for implanting and activating antimony to form a source/drain extension region in the formation of a transistor, in such a manner as to achieve high activation and avoid deactivation via subsequent exposure to high temperatures. This technique facilitates the formation of very thin source/drain regions that exhibit reduced sheet resistance while also suppressing short channel effects. Enhancements to these techniques are also suggested for more precise implantation of antimony to create a shallower source/drain extension, and to ensure formation of the source/drain extension region to underlap the gate. Also disclosed are transistors and other semiconductor components that include doped regions comprising activated antimony, such as those formed according to the disclosed methods.
摘要:
A method (200) fabricating a semiconductor device is disclosed. A poly oxide layer is formed over gate electrodes (210) on a semiconductor body and active regions defined within the semiconductor body in PMOS and NMOS regions. A nitride containing cap oxide layer is formed over the grown poly oxide layer (212). Offset spacers are formed adjacent to sidewalls of the gate electrodes (216). Extension regions are then formed (214) within the PMOS region and the NMOS region. Sidewall spacers are formed (218) adjacent to the sidewalls of the gate. electrodes. An n-type dopant is implanted into the NMOS region to form source/drain regions and a p-type dopant is implanted with an overdose amount into the PMOS region to form the source/drain regions within the PMOS region (220). A poly cap layer is formed over the device (222) and an anneal or other thermal process is performed (224) that causes the p-type dopant to diffuse into the nitride containing cap oxide layer and obtain a selected dopant profile having sufficient lateral abruptness.