摘要:
In catalyst systems of the Ziegler-Natta type comprising as active constituentsa) a titanium-containing solid component which is obtained by reacting a compound of titanium with a compound of magnesium, a halogen, an inorganic oxide as support, a C.sub.1 -C.sub.8 -alkanol and a carboxylic ester as electron donor compound,and also as cocatalyst,b) an aluminum compound andc) if desired, a further electron donor compound,the reaction of the individual components for preparing the titanium-containing solid component a) is carried out in the presence of an aromatic hydrocarbon as solvent.
摘要:
In catalyst systems of the Ziegler-Natta type modified during their preparation and comprising as active constituentsa) a titanium-containing solid component which is obtained by reacting a compound of titanium with a compound of magnesium, a halogen, an inorganic oxide as support, a C.sub.1 -C.sub.8 -alkanol and a carboxylic ester as electron donor compound,and also as cocatalystb) an aluminum compound andc) if desired, a further electron donor compound,the titanium-containing solid component a) is prepared by first, in a first stage, admixing an inorganic oxide as support with a solution of a chlorine-free compound of magnesium in an inert solvent, stirring this mixture for from 0.5 to 5 hours at from 10 to 120.degree. C. and subsequently reacting it while stirring continually in an inert solvent with a C.sub.1 -C.sub.8 -alkanol in an at least 1.3-fold excess, based on the compound of magnesium, to give a chlorine-free intermediate, then, without purification or extraction of the intermediate, adding a compound of trivalent or tetravalent titanium and a carboxylic ester as electron donor compound to this intermediate, stirring the resulting mixture for at least 30 minutes at from 20 to 130.degree. C., subsequently filtering off and washing the solid thus obtained and subsequently, in a second stage, extracting the solid obtained from the first stage in an inert solvent comprising at least 5% by weight of titanium tetrachloride and washing it with a liquid alkane.
摘要:
The invention relates to a method for producing a supported catalyst which contains metal, or a supported catalyst constituent which contains metal by impregnating a supporting material with an impregnating solution containing the metal constituent, whereby the impregnating solution flows through the supporting material.
摘要:
In a process for preparing a metal-containing supported catalyst or a metal-containing supported catalyst component by impregnation of a support material with an impregnation solution comprising the metal component, the impregnation solution flows through the support material.
摘要:
A process for preparing a supported transition metal catalyst comprising a particulate organic or inorganic support material, a transition metal complex and a compound capable of forming metallocenium ions comprises the following process steps: a) contacting a solution of a compound capable of forming metallocenium ions with a second solvent in which this compound is only sparingly soluble, in the presence of the support material, b) removing at least part of the solvent from the support material and c) contacting a solution of a mixture of a compound capable of forming metallocenium ions and a transition metal complex with a second solvent in which this mixture is only sparingly soluble, in the presence of the support material obtained as described in a) and b).
摘要:
Propene terpolymers consist of from 80 to 99.5 mol % of structural units derived from propene, from 0.1 to 15 mol % of structural units derived from ethene or a C4-C6-1-olefin (I) and from 0.1 to 15 mol % of structural units derived from a further C4-C12-1-olefin (II) which is different from the C4-C6-1-olefin (I), which propene terpolymers have a proportion of regioregular ′1-2′-inserted propene units corresponding to the formula (1) [ ′ 1 - 2 ′ ] [ ′ 1 - 2 ′ ] + [ ′ 2 - 1 ′ ] + [ ′ 1 - 3 ′ ] ( 1 ) of more than 0.99, have a melting point (TM), determined from the DSC peak maximum, of less than 135° C. and a weight average molecular weight (MW) of more than 80,000 g/mol and have a xylene-soluble proportion (XS) in % by weight of the propene terpolymer which obeys the following inequality (2) XS≦1411.21 exp(−0.0591 TM[° C.])−0.05 (2).
摘要:
A sealable coextruded film is made from at least one outer layer and from at least one base layer, where the outer layer is composed of a propylene terpolymer comprising from 80 to 99.5 mol % of structural units derived from propylene, from 0.2 to 15 mol % of structural units derived from ethene or from a C4-C6 1-olefin (I) and from 0.3 to 15 mol % of structural units derived from another C4-C12 1-olefin (II) different from the C4-C6 1-olefin (I), and where the propylene terpolymer has been prepared using metallocene catalysts.
摘要:
The catalyst systems comprise as active constituents a) a titanium-containing solid component comprising a compound of titanium, a compound of magnesium, a halogen, an inorganic oxide as support and a carboxylic ester as electron donor compound, and also, as cocatalyst, b) an aluminum compound and c) optionally a further electron donor compound, wherein the inorganic oxide used has a pH of from 1 to 6, an average particle diameter of from 5 to 200 &mgr;m, an average primary particle diameter of from 1 to 20 &mgr;M and voids or channels having an average diameter of from 0.1 to 20 &mgr;m and a macroscopic share of the volume of the overall particle within the range from 5 to 30%.
摘要:
Injection stretch blow molded containers are obtainable from olefin polymers, comprising homopolymers of propylene or copolymers of propylene with other C2-C10-alk-1-enes, which are obtainable by polymerizing the corresponding monomers with metallocene catalysts. Processes for producing injection stretch blow molded containers from olefin polymers, and also the use of olefin polymers for producing injection stretch blow molded containers, are described.
摘要:
Oxidized waxes are obtainable by oxidation of polyolefins obtainable by means of metallocene catalysis and having a molecular weight Mw in the range from 1000 to 40,000 g/mol.