摘要:
The present invention relates to patterning methods for organic devices, and more particularly to patterning methods using a die. A first layer of organic materials is deposited over a substrate, followed by a first electrode layer. A first patterned die having a raised portion is then pressed onto the first electrode layer, such that the raised portion of the first patterned die contacts portions of the first electrode layer. The patterned die is removed, such that the portions of the first electrode layer in contact with the raised portions of the first patterned die are removed. In one embodiment of the invention, a second organic layer is then deposited over the first electrode layer, followed by a second electrode layer. A second patterned die having a raised portion is pressed onto the second electrode layer, such that the raised portion of the second patterned die contacts portions of the second electrode layer. The second patterned die is removed, such that the portions of the second electrode layer in contact with the raised portions of the second patterned die are removed. Preferably the patterned die is coated with an adhesive material such as a metal.
摘要:
The present invention relates to patterning methods for organic devices, and more particularly to patterning methods using a die. A first layer of organic materials is deposited over a substrate, followed by a first electrode layer. A first patterned die having a raised portion is then pressed onto the first electrode layer, such that the raised portion of the first patterned die contacts portions of the first electrode layer. The patterned die is removed, such that the portions of the first electrode layer in contact with the raised portions of the first patterned die are removed. In one embodiment of the invention, a second organic layer is then deposited over the first electrode layer, followed by a second electrode layer. A second patterned die having a raised portion is pressed onto the second electrode layer, such that the raised portion of the second patterned die contacts portions of the second electrode layer. The second patterned die is removed, such that the portions of the second electrode layer in contact with the raised portions of the second patterned die are removed. Preferably the patterned die is coated with an adhesive material such as a metal.
摘要:
Methods for patterning a metal over a substrate and devices formed using the methods are disclosed. A patterned die having at least one raised portion and having a metal layer over the die is pressed onto a thin metal film over a substrate, such that the metal layer over the raised portion of the patterned die contacts portions of the thin metal film. Pressure is then applied such that the metal layer and the thin metal film cold-weld to one another. The patterned die is removed, such that the portions of the metal layer cold-welded to the thin metal film break away from the die and remain cold-welded to the thin metal film over the substrate, in substantially the same pattern as the patterned die.
摘要:
The present invention relates to patterning methods for organic devices, and more particularly to patterning methods using a die. The method includes depositing a first layer of organic materials over a substrate; depositing a second layer of an electrode material over the first layer of organic materials; pressing a patterned die having a raised portion onto the second layer; and removing the patterned die. Preferably the patterned die is coated with a metal. Optionally the method includes depositing additional layers over the substrate prior to pressing the patterned die.
摘要:
Methods of transferring a metal and/or organic layer from a patterned stamp, preferably a soft, elastomeric stamp, to a substrate are provided. The patterned metal or organic layer may be used for example, in a wide range of electronic devices. The present methods are particularly suitable for nanoscale patterning of organic electronic components.
摘要:
Methods of transferring a metal and/or organic layer from a patterned stamp, preferably a soft, elastomeric stamp, to a substrate are provided. The patterned metal or organic layer may be used for example, in a wide range of electronic devices. The present methods are particularly suitable for nanoscale patterning of organic electronic components.
摘要:
A method is provided. A first layer is provided over a substrate, the first layer comprising a first material. A patterned second layer is applied over the first layer via stamping. The second layer comprising a second material. The second layer covers a first portion of the first layer, and does not cover a second portion of the first layer. The second portion of the first layer is removed via a subtractive process while the first portion of the first layer is protected from removal by the patterned second layer.
摘要:
Top-gate, bottom-contact organic thin film transistors are provided. The transistors may include metal bilayer electrodes to aid in charge movement within the device. In an embodiment, an organic transistor includes a drain electrode and a source electrode disposed over a first region of a substrate, a transition metal oxide layer disposed over and in direct physical contact with the drain electrode and the source electrode, an organic preferentially hole conducting channel layer disposed over the metal oxide and between the drain electrode and the source electrode, and a gate electrode disposed over the channel.
摘要:
Disclosed herein are organic photosensitive devices including a first subcell and a second subcell and having at least one exciton-blocking charge carrier filter disposed between the subcells. The filters comprise a mixture of at least one wide energy gap material and at least one electron or hole conducting material. As described herein, the filters simultaneously block excitons and conduct the desired charge carrier (electrons or holes).
摘要:
An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.