Abstract:
A flexible coaxial cable comprises a core including at least one inner conductor and a closed cell foam dielectric surrounding the inner conductor. The flexible coaxial cable also includes a tubular metallic sheath closely surrounding and preferably bonded to the core. The closed cell foam dielectric is a low density polyolefin foam and possesses improved electrical properties over conventional foam dielectrics. The coaxial cable has a velocity of propagation of greater than 90 percent of the speed of light but still maintains high flexibility and bending characteristics.
Abstract:
A combination electrospray/microwave induced plasma (MIP) ionization source is used as the ionization source for a mass spectrometer. The electrospray can be operated in positive mode, negative mode, or it can be switched off. The microwave-induced plasma can also be switched on or off. This allows the instrument to be operated in multiple modes. With the electrospray off and the MIP on, the instrument will normally have its maximum elemental sensitivity. Mixed mode operation potentially allows the determination of additional information about the chemical constituents present in the analyte. In pure electrospray mode, it is possible to obtain molecular information and to analyze organic compounds.
Abstract:
A combination electrospray/microwave induced plasma (MIP) ionization source is used as the ionization source for a mass spectrometer. The electrospray can be operated in positive mode, negative mode, or it can be switched off. The microwave-induced plasma can also be switched on or off. This allows the instrument to be operated in multiple modes. With the electrospray off and the MIP on, the instrument will normally have its maximum elemental sensitivity. Mixed mode operation potentially allows the determination of additional information about the chemical constituents present in the analyte. In pure electrospray mode, it is possible to obtain molecular information and to analyze organic compounds.
Abstract:
In one embodiment, a matrix elimination apparatus for eliminating an acidic matrix includes: at least one column packed with a weak anion exchange resin; a source of samples, each sample having an acidic matrix; a basic solution source; a weakly acidic metal complexing reagent source, and an at least one pump, wherein the matrix elimination apparatus is configured such that the at least one pump can sequence through the acts of: a) pumping the basic solution through the column to regenerate the column, b) pumping the weakly acid metal complexing reagent through the column to activate the column; and c) pumping one of the samples through the activated column to provide a processed sample whose acidic matrix is eliminated.
Abstract:
The present invention provides a process for an industrial scale extraction and purification of xanthophylls (e.g., lutein and zeaxanthin) from plant material (e.g., alfalfa or other leafy green crops having high levels of chlorophyll). The process involves harvesting lutein rich alfalfa, extracting an oleoresin from the alfalfa leaves, saponifying the oleoresin, extracting and extracting lutein using a series of solvent extractions specific for oleoresin obtained from alfalfa or other leafy green plants.
Abstract:
Embodiments of the present invention address deficiencies of the art in respect to deploying XForms in an enterprise environment and provide a method, system and computer program product for forms integration of an external data model not implemented through a DOM accessible API. In one embodiment of the invention, a method for forms integration of an external data model not implemented through a DOM accessible API can include generating a data graph for an external data model for a forms based application and transforming the data graph into a DOM representation of the data graph. Value changes for fields of a form in the forms based application can be applied to nodes of the DOM representation and mutations in the nodes of the DOM representation can be synchronized to corresponding nodes in the data graph.
Abstract:
The present invention provides a process for an industrial scale extraction and purification of xanthophylls (e.g., lutein and zeaxanthin) from plant material (e.g., alfalfa or other leafy green crops having high levels of chlorophyll). The process involves harvesting lutein rich alfalfa, extracting an oleoresin from the alfalfa leaves, saponifying the oleoresin, extracting and extracting lutein using a series of solvent extractions specific for oleoresin obtained from alfalfa or other leafy green plants.
Abstract:
An automated matrix removal module is configurable to automatically withdraw a portion of sample containing an interfering matrix. The module is further configurable to mix the portion of sample with a reagent selected to react with the matrix to form a precipitant and then filter the mixture of sample and precipitant reagent through a filter. Finally, the module is further configurable to flush the precipitant from the filter.
Abstract:
A system and method for fluid dilution is provided, in one example to be used in conjunction with a chemical analysis tool. In one embodiment, a fluid dilution system includes a supply reservoir including a concentrated fluid, a diluent source including a diluent, and a diluted fluid reservoir operably coupled to the supply reservoir and the diluent source. A fluid level sensor is operably coupled to the diluted fluid reservoir, a pump is operably coupled between the supply reservoir and the diluted fluid reservoir, and a controller is configured to engage the pump based upon signals from the fluid level sensor to pump desired amounts of the concentrated fluid for providing a diluted fluid in the diluted fluid reservoir.
Abstract:
The present invention provides a process for an industrial scale extraction and purification of xanthophylls (e.g., lutein and zeaxanthin) from plant material (e.g., alfalfa or other leafy green crops having high levels of chlorophyll). The process involves harvesting lutein rich alfalfa, extracting an oleoresin from the alfalfa leaves, saponifying the oleoresin, extracting and extracting lutein using a series of solvent extractions specific for oleoresin obtained from alfalfa or other leafy green plants.