摘要:
Proteinaceous molecules with stem cell inhibition activity are analogues of LD78 or MIP-1.alpha. which have mutations to prevent or reduce multimer formation beyond certain stages (for example a dodecamer). Aggregate formation is therefore inhibited, and the resulting low molecular weight monomers (or oligomers) have improved solution properties leading to enhanced productivity and greater therapeutic utility as stem cell protective agents, which are useful in tumour therapy.
摘要:
Proteinaceous molecules with stem cell inhibition activity are analogues of LD78 or MIP-1.alpha. which have mutations to prevent or reduce multimer formation beyond certain stages (for example a dodecamer). Aggregate formation is therefore inhibited, and the resulting low molecular weight monomers (or oligomers) have improved solution properties leading to enhanced productivity and greater therapeutic utility as stem cell protective agents, which are useful in tumour therapy.
摘要:
The present invention relates generally to methods for stimulating cells, and more particularly, to a novel method to concentrate and/or stimulate cells that maximizes stimulation and/or proliferation of such cells. In the various embodiments, cells are stimulated and concentrated with a surface yielding enhanced proliferation, cell signal transduction, and/or cell surface moiety aggregation. In certain aspects methods for stimulating a population of cells such as T-cells, by simultaneous concentration and cell surface moiety ligation are provided by contacting the population of cells with a surface, that has attached thereto one or more agents that ligate a cell surface moiety and applying a force that predominantly drives cell concentration and cell surface moiety ligation, thereby inducing cell stimulation, cell surface moiety aggregation, and/or receptor signaling enhancement. Also provided are methods for producing phenotypically tailored cells, including T-cells for the use in diagnostics, drug discovery, and the treatment of a variety of indications, including cancer, viral infection, and immune related disorders. Compositions of cells having specific phenotypic properties produced by these processes are further provided.
摘要:
Tissue plasminogen activator (t-PA) analogues have at least one substitution in the growth factor (GF) domain that at least partially reduces hepatic receptor binding without substantially jeopardising physico-chemical stability in blood or fibrinolytic activity. This results in a longer plasma half life. Substitutions in the beta-sheet encompassing residues 63-72, especially at Leu 66 and/or Tyr 67 and/or Phe 68, are particularly preferred.
摘要:
The present invention relates generally to methods for activating and expanding cells, and more particularly, to a novel method to activate and/or stimulate cells that maximizes the expansion of such cells to achieve dramatically high densities. In the various embodiments, cells are activated and expanded to very high densities in a short period of time. In certain embodiments, cells are activated and expanded to very high numbers of cells in a short period of time. Compositions of cells activated and expanded by the methods herein are further provided.
摘要:
PDGF-B analogues are prepared in which an amino acid residue at a protease site is replaced with the corresponding amino acid residue from PDGF-A. The polypeptide is obtained at yields which are five to ten times greater than that for naturally occurring PDGF-B and retains the biological activity of the natural polypeptide.
摘要:
The present invention relates generally to methods for stimulating cells, and more particularly, to a novel method to concentrate and stimulate cells that maximizes stimulation and/or proliferation of such cells. In the various embodiments, cells are stimulated and concentrated with a surface yielding enhanced proliferation, cell signal transduction, and/or cell surface moiety aggregation. In certain aspects methods for stimulating a population of cells such as T-cells, by simultaneous concentration and cell surface moiety ligation are provided by contacting the population of cells with a surface, that has attached thereto one or more agents that ligate a cell surface moiety and applying a force that predominantly drives cell concentration and cell surface moiety ligation, thereby inducing cell stimulation, cell surface moiety aggregation, and/or receptor signaling enhancement. Also provided are methods for producing phenotypically tailored cells, including T-cells for the use in diagnostics, drug discovery, and the treatment of a variety of indications, including cancer, viral infection, and immune related disorders. Compositions of cells having specific phenotypic properties produced by these processes are further provided.
摘要:
Human mesenchymal stem cells having the phenotype SH3+, CD45+ can be isolated. These precursor mesenchymal item cells are useful for treatment of patients in need of mensenchymal stem cell.
摘要:
An apparatus (10) for determining the weight distribution between front and rear portions of a foot (24) of an individual standing on a surface (26). The apparatus (10) comprises a compressible elongate body member (11) which has an outer resilient housing (12) and at least one inner chamber (14). The at least one inner chamber (14) includes inflation means (22) located therein and the body member (11) is configurable to be positioned between the arch of an individual's foot (24) and the surface (26). The inflation means (22) is inflatable such that the body member (11) provides a pivot point between the front and rear portions (28, 30) of the individual's foot (24).
摘要:
The present invention relates generally to methods for activating and expanding cells, and more particularly, to a novel method to activate and/or stimulate cells that maximizes the expansion of such cells to achieve dramatically high densities. In the various embodiments, cells are activated and expanded to very high densities in a short period of time. In certain embodiments, cells are activated and expanded to very high numbers of cells in a short period of time. Compositions of cells activated and expanded by the methods herein are further provided.