摘要:
A semiconductor device including a gate structure present on a channel portion of a substrate, in which the gate structure includes at least one high-k gate dielectric layer and at least one metal gate conductor. A source region and a drain region is present on opposing sides of the channel portion of the substrate. A metal oxide gate cap is present on an upper surface of the metal gate conductor. The metal oxide composition of the metal oxide gate cap may be zirconium oxide, aluminum oxide, magnesium oxide, hafnium oxide or a combination thereof. Contacts may extend through an intralevel dielectric layer into contact with at least one of the source region and the drain region.
摘要:
After formation of raised source and drain regions, a conformal dielectric material liner is deposited within recessed regions formed by removal of shallow trench isolation structures and underlying portions of a buried insulator layer in a semiconductor-on-insulator (SOI) substrate. A dielectric material that is different from the material of the conformal dielectric material liner is subsequently deposited and planarized to form a planarized dielectric material layer. The planarized dielectric material layer is recessed selective to the conformal dielectric material liner to form dielectric fill portions that fill the recessed regions. Horizontal portions of the conformal dielectric material liner are removed by an anisotropic etch, while remaining portions of the conformal dielectric material liner form an outer gate spacer. At least one contact-level dielectric layer is deposited. Contact via structures electrically isolated from a handle substrate can be formed within the contact via holes.
摘要:
After formation of raised source and drain regions, a conformal dielectric material liner is deposited within recessed regions formed by removal of shallow trench isolation structures and underlying portions of a buried insulator layer in a semiconductor-on-insulator (SOI) substrate. A dielectric material that is different from the material of the conformal dielectric material liner is subsequently deposited and planarized to form a planarized dielectric material layer. The planarized dielectric material layer is recessed selective to the conformal dielectric material liner to form dielectric fill portions that fill the recessed regions. Horizontal portions of the conformal dielectric material liner are removed by an anisotropic etch, while remaining portions of the conformal dielectric material liner form an outer gate spacer. At least one contact-level dielectric layer is deposited. Contact via structures electrically isolated from a handle substrate can be formed within the contact via holes.
摘要:
After formation of a semiconductor device on a semiconductor-on-insulator (SOI) layer, a first dielectric layer is formed over a recessed top surface of a shallow trench isolation structure. A second dielectric layer that can be etched selective to the first dielectric layer is deposited over the first dielectric layer. A contact via hole for a device component located in or on a top semiconductor layer is formed by an etch. During the etch, the second dielectric layer is removed selective to the first dielectric layer, thereby limiting overetch into the first dielectric layer. Due to the etch selectivity, a sufficient amount of the first dielectric layer is present between the bottom of the contact via hole and a bottom semiconductor layer, thus providing electrical isolation for the ETSOI device from the bottom semiconductor layer.
摘要:
After formation of a semiconductor device on a semiconductor-on-insulator (SOI) layer, a first dielectric layer is formed over a recessed top surface of a shallow trench isolation structure. A second dielectric layer that can be etched selective to the first dielectric layer is deposited over the first dielectric layer. A contact via hole for a device component located in or on a top semiconductor layer is formed by an etch. During the etch, the second dielectric layer is removed selective to the first dielectric layer, thereby limiting overetch into the first dielectric layer. Due to the etch selectivity, a sufficient amount of the first dielectric layer is present between the bottom of the contact via hole and a bottom semiconductor layer, thus providing electrical isolation for the ETSOI device from the bottom semiconductor layer.
摘要:
A semiconductor substrate having an isolation region and method of forming the same. The method includes the steps of providing a substrate having a substrate layer, a buried oxide (BOX), a silicon on insulator (SOI) layer, a pad oxide layer, and a pad nitride layer, forming a shallow trench region, etching the pad oxide layer to form ears and etching the BOX layer to form undercuts, depositing a liner on the shallow trench region, depositing a soft mask over the surface of the shallow trench region, filling the shallow trench region, etching the soft mask so that it is recessed to the top of the BOX layer, etching the liner off certain regions, removing the soft mask, and filling and polishing the shallow trench region. The liner prevents shorting of the semiconductor device when the contacts are misaligned.
摘要:
A finFET with self-aligned punchthrough stopper and methods of manufacture are disclosed. The method includes forming spacers on sidewalls of a gate structure and fin structures of a finFET device. The method further includes forming a punchthrough stopper on exposed sidewalls of the fin structures, below the spacers. The method further includes diffusing dopants from the punchthrough stopper into the fin structures. The method further includes forming source and drain regions adjacent to the gate structure and fin structures.
摘要:
A method of making a silicon-on-insulator (SOI) semiconductor device includes etching an undercut isolation trench into an SOI substrate, the SOI substrate comprising a bottom substrate, a buried oxide (BOX) layer formed on the bottom substrate, and a top SOI layer formed on the BOX layer, wherein the undercut isolation trench extends through the top SOI layer and the BOX layer and into the bottom substrate such that a portion of the undercut isolation trench is located in the bottom substrate underneath the BOX layer. The undercut isolation trench is filled with an undercut fill comprising an insulating material to form an undercut isolation region. A field effect transistor (FET) device is formed on the top SOI layer adjacent to the undercut isolation region, wherein the undercut isolation region extends underneath a source/drain region of the FET.
摘要:
Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.
摘要:
Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.