摘要:
A semiconductor device including a gate structure present on a channel portion of a substrate, in which the gate structure includes at least one high-k gate dielectric layer and at least one metal gate conductor. A source region and a drain region is present on opposing sides of the channel portion of the substrate. A metal oxide gate cap is present on an upper surface of the metal gate conductor. The metal oxide composition of the metal oxide gate cap may be zirconium oxide, aluminum oxide, magnesium oxide, hafnium oxide or a combination thereof. Contacts may extend through an intralevel dielectric layer into contact with at least one of the source region and the drain region.
摘要:
After formation of a semiconductor device on a semiconductor-on-insulator (SOI) layer, a first dielectric layer is formed over a recessed top surface of a shallow trench isolation structure. A second dielectric layer that can be etched selective to the first dielectric layer is deposited over the first dielectric layer. A contact via hole for a device component located in or on a top semiconductor layer is formed by an etch. During the etch, the second dielectric layer is removed selective to the first dielectric layer, thereby limiting overetch into the first dielectric layer. Due to the etch selectivity, a sufficient amount of the first dielectric layer is present between the bottom of the contact via hole and a bottom semiconductor layer, thus providing electrical isolation for the ETSOI device from the bottom semiconductor layer.
摘要:
After formation of a semiconductor device on a semiconductor-on-insulator (SOI) layer, a first dielectric layer is formed over a recessed top surface of a shallow trench isolation structure. A second dielectric layer that can be etched selective to the first dielectric layer is deposited over the first dielectric layer. A contact via hole for a device component located in or on a top semiconductor layer is formed by an etch. During the etch, the second dielectric layer is removed selective to the first dielectric layer, thereby limiting overetch into the first dielectric layer. Due to the etch selectivity, a sufficient amount of the first dielectric layer is present between the bottom of the contact via hole and a bottom semiconductor layer, thus providing electrical isolation for the ETSOI device from the bottom semiconductor layer.
摘要:
A method of forming a semiconductor device is provided where in one embodiment an STI fill is recessed below the pad nitride and pad oxide layers, to a level substantially coplanar with the top surface of the substrate. A thin (having a thickness in the range of about 10 Å-100 Å) wet etch resistant layer is formed in contact with and completely covering at least the top surface of the recessed STI fill material. The thin wet etch resistant layer is more resistant to a wet etch process than at least the pad oxide layer. The thin wet etch resistant layer may be a refractory dielectric material, or a dielectric such as HfOx, AlyOx, ZrOx, HfZrOx, and HfSiOx. The inventive wet etch resistant layer improves the wet etch budget of subsequent wet etch processing steps.
摘要翻译:提供一种形成半导体器件的方法,其中在一个实施例中,STI填充物在衬垫氮化物和衬垫氧化物层下方凹入到与衬底的顶表面基本上共面的水平。 至少形成凹入的STI填充材料的上表面,形成薄(具有在约10埃-120埃范围内的厚度)耐湿蚀刻层。 薄的耐湿蚀刻层比至少衬垫氧化物层更耐湿蚀刻工艺。 薄的耐湿蚀刻层可以是耐火电介质材料,或诸如HfO x,Al y O x,ZrO x,HfZrO x和HfSiO x的电介质。 本发明的耐湿蚀刻层提高了后续湿蚀刻处理步骤的湿法蚀刻预算。
摘要:
After formation of raised source and drain regions, a conformal dielectric material liner is deposited within recessed regions formed by removal of shallow trench isolation structures and underlying portions of a buried insulator layer in a semiconductor-on-insulator (SOI) substrate. A dielectric material that is different from the material of the conformal dielectric material liner is subsequently deposited and planarized to form a planarized dielectric material layer. The planarized dielectric material layer is recessed selective to the conformal dielectric material liner to form dielectric fill portions that fill the recessed regions. Horizontal portions of the conformal dielectric material liner are removed by an anisotropic etch, while remaining portions of the conformal dielectric material liner form an outer gate spacer. At least one contact-level dielectric layer is deposited. Contact via structures electrically isolated from a handle substrate can be formed within the contact via holes.
摘要:
After formation of raised source and drain regions, a conformal dielectric material liner is deposited within recessed regions formed by removal of shallow trench isolation structures and underlying portions of a buried insulator layer in a semiconductor-on-insulator (SOI) substrate. A dielectric material that is different from the material of the conformal dielectric material liner is subsequently deposited and planarized to form a planarized dielectric material layer. The planarized dielectric material layer is recessed selective to the conformal dielectric material liner to form dielectric fill portions that fill the recessed regions. Horizontal portions of the conformal dielectric material liner are removed by an anisotropic etch, while remaining portions of the conformal dielectric material liner form an outer gate spacer. At least one contact-level dielectric layer is deposited. Contact via structures electrically isolated from a handle substrate can be formed within the contact via holes.
摘要:
A method is provided for fabricating a transistor. A replacement gate stack is formed on a semiconductor layer, a gate spacer is formed, and a dielectric layer is formed. The dummy gate stack is removed to form a cavity. A gate dielectric and a work function metal layer are formed in the cavity. The cavity is filled with a gate conductor. One and only one of the gate conductor and the work function metal layer are selectively recessed. An oxide film is formed in the recess such that its upper surface is co-planar with the upper surface of the dielectric layer. The oxide film is used to selectively grow an oxide cap. An interlayer dielectric is formed and etched to form a cavity for a source/drain contact. A source/drain contact is formed in the contact cavity, with a portion of the source/drain contact being located directly on the oxide cap.
摘要:
A method of forming a semiconductor device is provided where in one embodiment an STI fill is recessed below the pad nitride and pad oxide layers, to a level substantially coplanar with the top surface of the substrate. A thin (having a thickness in the range of about 10 Å-100 Å) wet etch resistant layer is formed in contact with and completely covering at least the top surface of the recessed STI fill material. The thin wet etch resistant layer is more resistant to a wet etch process than at least the pad oxide layer. The thin wet etch resistant layer may be a refractory dielectric material, or a dielectric such as HfOx, AlyOx, ZrOx, HfZrOx, and HfSiOx. The inventive wet etch resistant layer improves the wet etch budget of subsequent wet etch processing steps.
摘要翻译:提供一种形成半导体器件的方法,其中在一个实施例中,STI填充物在衬垫氮化物和衬垫氧化物层下方凹入到与衬底的顶表面基本上共面的水平。 至少形成凹入的STI填充材料的上表面,形成薄(具有在约10埃-120埃范围内的厚度)耐湿蚀刻层。 薄的耐湿蚀刻层比至少衬垫氧化物层更耐湿蚀刻工艺。 薄的耐湿蚀刻层可以是耐火电介质材料,或诸如HfO x,Al y O x,ZrO x,HfZrO x和HfSiO x的电介质。 本发明的耐湿蚀刻层提高了后续湿蚀刻处理步骤的湿法蚀刻预算。
摘要:
Self-aligned contacts in a metal gate structure and methods of manufacture are disclosed herein. The method includes forming a metal gate structure having a sidewall structure. The method further includes recessing the metal gate structure and forming a masking material within the recess. The method further includes forming a borderless contact adjacent to the metal gate structure, overlapping the masking material and the sidewall structure.
摘要:
Gate to contact shorts are reduced by forming dielectric caps in replaced gate structures. Embodiments include forming a replaced gate structure on a substrate, the replaced gate structure including an ILD having a cavity, a first metal on a top surface of the ILD and lining the cavity, and a second metal on the first metal and filling the cavity, planarizing the first and second metals, forming an oxide on the second metal, removing the oxide, recessing the first and second metals in the cavity, forming a recess, and filling the recess with a dielectric material. Embodiments further include dielectric caps having vertical sidewalls, a trapezoidal shape, a T-shape, or a Y-shape.