摘要:
Provided are an anode active material for a lithium secondary battery having high reversible capacity and excellent charge/discharge efficiency, comprising a complex composed of ultra-fine Si phase particles and an oxide surrounding the ultra-fine Si phase particles, and a carbon material; and a method for preparing the same. The present invention also provides a method for preparing an anode active material for a lithium secondary battery comprising producing a complex composed of ultra-fine Si particles and an oxide surrounding the ultra-fine Si particles by mixing a silicon oxide and a material having an absolute value of oxide formation enthalpy (ΔHfor) greater than that of the silicon oxide and negative oxide formation enthalpy by a mechanochemical process or subjecting them to a thermochemical reaction to reduce the silicon oxide; and mixing the Si phase-containing oxide complex and carbon material.
摘要:
The present invention relates to a method for improving charge/discharge cycle characteristics of a lithium secondary battery using a Si based anode active material, the method comprising surface-treating a surface of an anode current collector to have specific morphology, and preferably vapor-depositing a silicon film, as the anode active material by sputtering under application of bias voltage to the surface-treated anode current collector, and/or disposing an adhesive layer between the surface-treated anode current collector and silicon film, so as to reinforce bondability between the anode current collector and active material, ultimately leading to improvement of charge/discharge characteristics of the battery.
摘要:
Provided are an anode active material for a lithium secondary battery having high reversible capacity and excellent charge/discharge efficiency, comprising a complex composed of ultra-fine Si phase particles and an oxide surrounding the ultra-fine Si phase particles, and a carbon material; and a method for preparing the same. The present invention also provides a method for preparing an anode active material for a lithium secondary battery comprising producing a complex composed of ultra-fine Si particles and an oxide surrounding the ultra-fine Si particles by mixing a silicon oxide and a material having an absolute value of oxide formation enthalpy (ΔHfor)greater than that of the silicon oxide and negative oxide formation enthalpy by a mechanochemical process or subjecting them to a thermochemical reaction to reduce the silicon oxide; and mixing the Si phase-containing oxide complex and carbon material.
摘要:
The present invention relates to a high barrier multilayer film for functional medical solution product comprising in order, an outer layer comprising polyethyleneterephthalate deposited inorganic oxide thereon; a first adhesive layer comprising ester type polyurethane; a first intermediate layer comprising ethylene vinyl alcohol copolymer; a second adhesive layer comprising ester type polyurethane; a second intermediate layer comprising polyamide; a third adhesive layer comprising ester type polyurethane; and an inner layer comprising propylene-based polymer. The multilayer film has the merits of improved transparency, heat resistance, sealing property, durability, competitive price, oxygen barrier property and less pinhole, so that may be applied to a outer bag of pouch type container of medical solution.
摘要:
The present invention relates to a multilayer film for medical solution container and a container comprising the same, more particularly, to the multilayer film for medical solution comprising an outer layer comprising polypropylene, polypropylene copolymer or a mixture thereof; an intermediate layer comprising a mixture of 30˜70% by weight of propylene-based polymer including polypropylene, polypropylene copolymer or a mixture thereof, and 30˜70% by weight of a thermoplastic elastomer; and an inner layer comprising a mixture of 50˜70% by weight of propylene-based polymer including polypropylene, polypropylene copolymer or a mixture thereof, 5˜20% by weight of polyethylene, and 10˜45% by weight of a thermoplastic elastomer. The multilayer film has such improved flexibility, transparency, heat resistance, sealing property and durability, as well as easy peelability and peel strength with non-temperature sensitive that can be applied to a pouch type container for packaging and administering of medical solutions or blood.
摘要:
The present invention relates to a multilayer film for medical solution container and a container comprising the same, more particularly, to the multilayer film for medical solution comprising an outer layer comprising polypropylene, polypropylene copolymer or a mixture thereof; an intermediate layer comprising a mixture of 30˜70% by weight of propylene-based polymer including polypropylene, polypropylene copolymer or a mixture thereof, and 30˜70% by weight of a thermoplastic elastomer; and an inner layer comprising a mixture of 50˜70% by weight of propylene-based polymer including polypropylene, polypropylene copolymer or a mixture thereof, 5˜20% by weight of polyethylene, and 10˜45% by weight of a thermoplastic elastomer. The multilayer film has such improved flexibility, transparency, heat resistance, sealing property and durability, as well as easy peelability and peel strength with non-temperature sensitive that can be applied to a pouch type container for packaging and administering of medical solutions or blood.
摘要:
Provided are an anode active material for a lithium secondary battery having high reversible capacity and excellent charge/discharge efficiency, comprising a complex composed of ultra-fine Si phase particles and an oxide surrounding the ultra-fine Si phase particles, and a carbon material; and a method for preparing the same. The present invention also provides a method for preparing an anode active material for a lithium secondary battery comprising producing a complex composed of ultra-fine Si particles and an oxide surrounding the ultra-fine Si particles by mixing a silicon oxide and a material having an absolute value of oxide formation enthalpy (ΔHfor) greater than that of the silicon oxide and negative oxide formation enthalpy by a mechanochemical process or subjecting them to a thermochemical reaction to reduce the silicon oxide; and mixing the Si phase-containing oxide complex and carbon material.
摘要:
A method and apparatus of classifying repetitive defects on a substrate is provided. Defects of dies on the substrate are sequentially compared with a predetermined reference die. Sets of coordinates are marked on the reference die which are corresponding to the position of the defects on the dies on the substrate. Then, repetitive defects are classified which are repeatedly marked in a specified region on the reference die.
摘要:
Disclosed herein is a prompt gamma-ray detection apparatus for analyzing chemical materials using femtosecond pulse laser-induced neutrons, which can be effectively used in the nondestructive inspection of various materials, such as metals, coal, cement, radioactive materials and the like as well as explosives and chemical materials, and which can provide better measurement results for the analysis of basic materials, and a method of measuring prompt gamma-rays using the apparatus. The prompt gamma-ray detection apparatus is advantageous because it can non-destructively analyze the elements in a chemical sample using a femtosecond pulse laser-induced neutron generator that solves the problems of an atomic reactor for research or a radioactive isotope as a neutron radiation source.
摘要:
Disclosed herein is a prompt gamma-ray detection apparatus for analyzing chemical materials using femtosecond pulse laser-induced neutrons, which can be effectively used in the nondestructive inspection of various materials, such as metals, coal, cement, radioactive materials and the like as well as explosives and chemical materials, and which can provide better measurement results for the analysis of basic materials, and a method of measuring prompt gamma-rays using the apparatus. The prompt gamma-ray detection apparatus is advantageous because it can non-destructively analyze the elements in a chemical sample using a femtosecond pulse laser-induced neutron generator that solves the problems of an atomic reactor for research or a radioactive isotope as a neutron radiation source.