Abstract:
Described herein is a degradable linking agent of formula Photo1-LG-Photo2, wherein Photo1 and Photo2 independently represent at least one photoreactive group and LG represents a linking group comprising one or more silicon atoms or one or more phosphorous atoms. The degradable linking agent includes a covalent linkage between at least one photoreactive group and the linking group, wherein the covalent linkage between at least one photoreactive group and the linking group is interrupted by at least one heteroatom. A method for coating a support surface with the degradable linking agent, coated support surfaces and medical devices are also described.
Abstract:
Described herein is a degradable linking agent of formula Photo1-LG-Photo2, wherein Photo1 and Photo2 independently represent at least one photoreactive group and LG represents a linking group comprising one or more silicon atoms or one or more phosphorous atoms. The degradable linking agent includes a covalent linkage between at least one photoreactive group and the linking group, wherein the covalent linkage between at least one photoreactive group and the linking group is interrupted by at least one heteroatom. A method for coating a support surface with the degradable linking agent, coated support surfaces and medical devices are also described.
Abstract:
Described herein is a degradable linking agent of formula Photo1-LG-Photo2, wherein Photo1 and Photo2 independently represent at least one photoreactive group and LG represents a linking group comprising one or more silicon atoms or one or more phosphorous atoms. The degradable linking agent includes a covalent linkage between at least one photoreactive group and the linking group, wherein the covalent linkage between at least one photoreactive group and the linking group is interrupted by at least one heteroatom. A method for coating a support surface with the degradable linking agent, coated support surfaces and medical devices are also described.
Abstract:
Described herein is a degradable linking agent of formula Photo1-LG-Photo2, wherein Photo1 and Photo2 independently represent at least one photoreactive group and LG represents a linking group comprising one or more silicon atoms or one or more phosphorous atoms. The degradable linking agent includes a covalent linkage between at least one photoreactive group and the linking group, wherein the covalent linkage between at least one photoreactive group and the linking group is interrupted by at least one heteroatom. A method for coating a support surface with the degradable linking agent, coated support surfaces and medical devices are also described.
Abstract:
Described herein is a degradable linking agent of formula Photo1-LG-Photo2, wherein Photo1 and Photo2 independently represent at least one photoreactive group and LG represents a linking group comprising one or more silicon atoms or one or more phosphorous atoms. The degradable linking agent includes a covalent linkage between at least one photoreactive group and the linking group, wherein the covalent linkage between at least one photoreactive group and the linking group is interrupted by at least one heteroatom. A method for coating a support surface with the degradable linking agent, coated support surfaces and medical devices are also described.
Abstract:
Described herein is a degradable linking agent of formula Photo1-LG-Photo2, wherein Photo1 and Photo2 independently represent at least one photoreactive group and LG represents a linking group comprising one or more silicon atoms or one or more phosphorous atoms. The degradable linking agent includes a covalent linkage between at least one photoreactive group and the linking group, wherein the covalent linkage between at least one photoreactive group and the linking group is interrupted by at least one heteroatom. A method for coating a support surface with the degradable linking agent, coated support surfaces and medical devices are also described.
Abstract:
Disclosed herein is a delivery composition for administering a hydrophobic active agent. In one embodiment, a delivery composition for local administration of a hydrophobic active agent to a tissue or organ of a patient is disclosed. In one embodiment, the delivery composition includes a cationic delivery agent, a therapeutically effective amount of a hydrophobic active agent and a pharmaceutically acceptable aqueous carrier. In one embodiment, the cationic delivery agent includes polyethyleneimine (PEI). In an embodiment, the invention includes a drug delivery device including a substrate; and coated therapeutic agent particles disposed on the substrate, the coated therapeutic agent particles comprising a particulate hydrophobic therapeutic agent; and a vinyl amine polymer. Methods of making the delivery composition, as well as kits and methods of use are also included herein.
Abstract:
The invention is directed to latent reactive and polymerizable derivatives of fluorescent stilbene-based compounds. The compounds can be used to provide articles with a fluorescence property, such as medical devices (e.g., catheters). The fluorescent compounds can be used in association with polymers, or can be incorporated into polymers, and the polymers used in a coating composition on the article surface. The compounds allow for visual or machine inspection of coating properties such as uniformity of coverage.
Abstract:
Described herein is a degradable linking agent of formula Photo1-LG-Photo2, wherein Photo1 and Photo2 independently represent at least one photoreactive group and LG represents a linking group comprising one or more silicon atoms or one or more phosphorous atoms. The degradable linking agent includes a covalent linkage between at least one photoreactive group and the linking group, wherein the covalent linkage between at least one photoreactive group and the linking group is interrupted by at least one heteroatom. A method for coating a support surface with the degradable linking agent, coated support surfaces and medical devices are also described.
Abstract:
Disclosed herein is a delivery composition for administering a hydrophobic active agent. In one embodiment, a delivery composition for local administration of a hydrophobic active agent to a tissue or organ of a patient is disclosed. In one embodiment, the delivery composition includes a cationic delivery agent, a therapeutically effective amount of a hydrophobic active agent and a pharmaceutically acceptable aqueous carrier. In one embodiment, the cationic delivery agent includes polyethyleneimine (PEI). In an embodiment, the invention includes a drug delivery device including a substrate; and coated therapeutic agent particles disposed on the substrate, the coated therapeutic agent particles comprising a particulate hydrophobic therapeutic agent; and a vinyl amine polymer. Methods of making the delivery composition, as well as kits and methods of use are also included herein.