摘要:
A process for producing a 2-(unsubstituted or carbon-substituted)-1-carbapen-2-em-3-carboxylic acid derivative, which comprises reacting a 2-trifluoromethanesulfonyloxy-1-carbapen-2-em-3-carboxylic acid derivative or the 1-carbapen-2-em-3-carboxylic acid derivative derived from a 2-oxo-1-carbapenam-3-carboxylic acid derivative and trifluoromethanesulfonic anhydride, and a stannane derivative in an inert solvent in the presence of a palladium compound and a salt.
摘要:
A compound represented by formula (I): ##STR1## wherein R.sup.1 represents a hydrogen atom or a methyl group; R.sup.2 and R.sup.3, which may be the same or different, each represents a hydrogen atom or a lower alkyl group; and R.sup.4 represents a carboxyl group, a lower alkoxycarbonyl group, a carbamoyl group, a lower alkylcarbamoyl group, a di-lower alkylcarbamoyl group, or a carbonyl group substituted with a heterocyclic group selected from the group consisting of an aziridinyl group, an azetidinyl group, a pyrrolidinyl group, a piperidino group, a morpholino group, a thio-morpholino group, a piperazinyl group, and a 4-lower alkyl-1-piperazinyl group, or a pharmaceutically acceptable salt or ester thereof. The compound of formula (I) and their salts or esters exhibit excellent antibacterial activity.
摘要:
A process for producing a compound of the formula: ##STR1## wherein R.sup.1 is a hydrogen atom, a lower alkyl group or an aralkyl group, and R.sup.2 is a hydrogen atom or a hydroxyl-protecting group, or a salt thereof, which comprises removing from a compound of the formula: ##STR2## wherein R.sup.3 is a hydrogen atom or a hydroxyl-protecting group, R.sup.4 and R.sup.5 which may be the same or different are N-protecting groups selected from the group consisting of lower alkyl groups and aralkyl groups, and X.sup..crclbar. is an anion, the N-protecting group(s), if necessary, together with the hydroxyl-protecting group.
摘要:
An image encoding device include a predicting unit for adaptively determining the size of each motion prediction unit block according to color component signals, and for dividing each motion prediction unit block into motion vector allocation regions to search for a motion vector, and a variable length encoding unit for, when a motion vector is allocated to the whole of each motion prediction unit block, performing encoding in mc_skip mode if the motion vector is equal to an estimated vector and a prediction error signal 5 does not exist, and for, when each motion vector allocation region has a size equal to or larger than a predetermined size and a motion vector is allocated to the whole of each motion vector allocation region, performing encoding in sub_mc_skip mode if the motion vector is equal to an estimated vector and a prediction error signal does not exist.
摘要:
To provide a mobile terminal device that can eliminate influence of static electricity upon signal lines of a signal-line flexible board that is placed through a connecting unit that connects two casings to be able to overlie one another. In the mobile terminal device, one of the casings and the other casing are connected through a connecting unit to be able to overlie one another, and a signal-line flexible board that connects circuit boards housed in one of the casings and the other casing, respectively, is placed through the connecting unit. The mobile terminal device includes a pair of frame-grounded flexible boards that are formed wider than the signal-line flexible board to have a conductor pattern frame grounded, and sandwich both outer surfaces of the signal-line flexible board therebetween.
摘要:
A photoelectric encoder includes: a scale having a grating formed with a predetermined period Ps; and a detector head being movable relative to the scale and including a light source and a light receiving unit. In a configuration where light receiving elements in the light receiving unit output N-points light and dark signals (N is an integer of 3 or more), and where phases of the N-points light and dark signals are detected by a least-squares method to fit a sinusoidal function with fixed period to N-points digital signals digitized from the N-points light and dark signals, an N-points light and dark signal period P is set at an integral multiple of a data-point interval w of the N-points digital signals, and an overall length M of the light receiving elements is set at an integral multiple of the N-points light and dark signal period P. Thereby, position detecting errors occurring due to a stain of the scale and/or a defect in the grating can be reduced by simple computing.
摘要:
An image encoding device include a predicting unit for adaptively determining the size of each motion prediction unit block according to color component signals, and for dividing each motion prediction unit block into motion vector allocation regions to search for a motion vector, and a variable length encoding unit for, when a motion vector is allocated to the whole of each motion prediction unit block, performing encoding in mc_skip mode if the motion vector is equal to an estimated vector and a prediction error signal 5 does not exist, and for, when each motion vector allocation region has a size equal to or larger than a predetermined size and a motion vector is allocated to the whole of each motion vector allocation region, performing encoding in sub_mc_skip mode if the motion vector is equal to an estimated vector and a prediction error signal does not exist.
摘要:
An objective of the present invention is to provide the solid-state imaging device and the driving method thereof which can control: a poor picture quality, such as blooming, to maximize a dynamic range of the photodiode; and a poor picture quality resulted from an incomplete read-out operation. A solid-state imaging device in the present invention includes: a solid-state imaging element; and a driving pulse controlling unit applying a driving pulse to each of read-out gates of a column CCD. The driving pulse controlling unit transfers in a column direction signal charge within a charge transfer region of the column CCD by applying a column transfer clock having a LOW level voltage and a MIDDLE level voltage, and the LOW level voltage and the MIDDLE level voltage are minus voltages.
摘要:
A driving method is applied to a solid-state imaging apparatus having photoelectric conversion portions, transfer portion for reading out signal charges, and an excess charge draining portion for draining charges exceeding a saturation charge amount that is set by a reference voltage. One of driving modes is selected from a full pixel mode in which accumulated signal charges are detected individually for each pixel and a pixel mixing mode in which signal charges of a predetermined number of pixels are mixed to be detected. In the full pixel mode, the draining portion is supplied with the reference voltage having the same value during a charge accumulation period and a read transfer period for read transferring charges. In the pixel mixing mode, the draining portion is supplied with the reference voltage having a low level during the charge accumulation period and the reference voltage having a high level during the read transfer period. An appropriate driving for the pixel mixing mode can be performed by avoiding a limitation of a substrate voltage, without deteriorating the spectral characteristics, the sensitivity, nor the linearity.
摘要:
A semiconductor device which includes both an E-FET and a D-FET and can facilitate control of the Vth in an E-FET and suppress a decrease in the Vf, and a manufacturing method of the same are provided. A semiconductor device which includes both an E-FET and a D-FET on the same semiconductor substrate includes: a first threshold adjustment layer for adjusting threshold of the E-FET; a first etching stopper layer formed on the first threshold adjustment layer; the second threshold adjustment layer formed on the first etching stopper layer for adjusting threshold of the D-FET; a second etching stopper layer formed on the second threshold adjustment layer; a first gate electrode penetrating through the first etching stopper layer, the second threshold adjustment layer, and the second etching stopper layer, which is in contact with the first threshold adjustment layer; and the second gate electrode penetrating through the second etching stopper layer, which is in contact with the second threshold adjustment layer.