摘要:
A method for reducing stress induced defects in heterogeneous epitaxial interfaces of a semiconductor device is disclosed. The method includes forming a fin structure with a fin base, a superlattice structure on the fin base, forming a polysilicon gate structure on the fin structure, forming a source/drain (S/D) opening within a portion of the fin structure uncovered by the polysilicon gate structure, modifying the first surfaces of the first layers to curve a profile of the first surfaces, depositing first, second, and third passivation layers on the first, second, and third surfaces, respectively, forming an epitaxial S/D region within the S/D opening, and replacing the polysilicon gate structure with a metal gate structure. The superlattice structure includes first and second layers with first and second lattice constants, respectively, and the first and second lattice constants are different from each other.
摘要:
In an embodiment, a device includes: a semiconductor substrate having a channel region; a gate stack over the channel region; and an epitaxial source/drain region adjacent the gate stack, the epitaxial source/drain region including: a main portion in the semiconductor substrate, the main portion including a semiconductor material doped with gallium, a first concentration of gallium in the main portion being less than the solid solubility of gallium in the semiconductor material; and a finishing portion over the main portion, the finishing portion doped with gallium, a second concentration of gallium in the finishing portion being greater than the solid solubility of gallium in the semiconductor material.
摘要:
A method for manufacturing a semiconductor structure is provided. The method includes: receiving a substrate having a first epitaxy region in a first transistor of a first conductive type and a second epitaxy region in a second transistor of a second conductive type; introducing an agent onto the first epitaxy region and the second epitaxy region, wherein the agent is selectively deposited to the second epitaxy region; selectively depositing a first metal layer on the first epitaxy region; and depositing a second metal layer on the first epitaxy region and the second epitaxy region. A semiconductor structure according to the method is also provided.
摘要:
In an embodiment, a device includes: a semiconductor substrate having a channel region; a gate stack over the channel region; and an epitaxial source/drain region adjacent the gate stack, the epitaxial source/drain region including: a main portion in the semiconductor substrate, the main portion including a semiconductor material doped with gallium, a first concentration of gallium in the main portion being less than the solid solubility of gallium in the semiconductor material; and a finishing portion over the main portion, the finishing portion doped with gallium, a second concentration of gallium in the finishing portion being greater than the solid solubility of gallium in the semiconductor material.
摘要:
Embodiments described herein relate generally to one or more methods for forming an interconnect structure, such as a dual damascene interconnect structure comprising a conductive line and a conductive via, and structures formed thereby. In some embodiments, an interconnect opening is formed through one or more dielectric layers over a semiconductor substrate. The interconnect opening has a via opening and a trench over the via opening. A conductive via is formed in the via opening. A nucleation enhancement treatment is performed on one or more exposed dielectric surfaces of the trench. A conductive line is formed in the trench on the one or more exposed dielectric surfaces of the trench and on the conductive via.
摘要:
A method includes probing at least one semiconductor fin using a four-point probe head, with four probe pins of the four-point probe head contacting the at least one semiconductor fin. A resistance of the at least one semiconductor fin is calculated. A carrier concentration of the semiconductor fin is calculated from the resistance.
摘要:
A semiconductor device includes a substrate and a gate structure over the substrate. The gate structure includes a dielectric portion and an electrode portion that is disposed over the dielectric portion. The dielectric portion includes a carbon-doped high dielectric constant (high-k) dielectric layer over the substrate and a carbon-free high-k dielectric layer adjacent to the electrode portion.
摘要:
A gate stressor for a fin field effect transistor (FinFET) device is provided. The gate stressor includes a floor, a first stressor sidewall, and a second stressor sidewall. The floor is formed on a first portion of a gate layer. The gate layer is disposed above a shallow trench isolation (STI) region. The first stressor sidewall formed on a second portion of the gate layer. The second portion of the gate layer is disposed on sidewalls of a fin. The second stressor sidewall formed on the third portion of the gate layer. The third portion of the gate layer is disposed on sidewalls of a structure spaced apart from the fin. The first stressor side wall and the second stressor sidewall do not exceed a height of the fin.
摘要:
A method includes performing a first probing on a sample integrated circuit structure to generate a first Raman spectrum. During the first probing, a first laser beam having a first wavelength is projected on the sample integrated circuit structure. The method further includes performing a second probing on the sample integrated circuit structure to generate a second Raman spectrum, wherein a Tip-Enhanced Raman Scattering (TERS) method is used to probe the sample integrated circuit structure. During the second probing, a second laser beam having a second wavelength different from the first wavelength is projected on the sample integrated circuit structure. A stress in a first probed region of the sample integrated circuit structure is then from the first Raman spectrum and the second Raman spectrum.
摘要:
A gate stressor for a fin field effect transistor (FinFET) device is provided. The gate stressor includes a floor, a first stressor sidewall, and a second stressor sidewall. The floor is formed on a first portion of a gate layer. The gate layer is disposed above a shallow trench isolation (STI) region. The first stressor sidewall formed on a second portion of the gate layer. The second portion of the gate layer is disposed on sidewalls of a fin. The second stressor sidewall formed on the third portion of the gate layer. The third portion of the gate layer is disposed on sidewalls of a structure spaced apart from the fin. The first stressor side wall and the second stressor sidewall do not exceed a height of the fin.