Abstract:
A semiconductor device may be formed by forming a silicon-containing gate dielectric layer over a semiconductor layer. A gate metal layer is formed over the gate dielectric layer; the gate metal layer includes 2 atomic percent to 10 atomic percent silicon during formation. The gate metal layer is patterned to form a metal gate. Source and drain contact holes are subsequently formed, and contact metal is formed and patterned in the contact holes. A subsequent contact anneal heats the contact metal and gate for at least 30 seconds at a temperature of at least 750° C.
Abstract:
A method of fabricating a multi-layer epitaxial buffer layer stack for transistors includes depositing a buffer stack on a substrate. A first voided Group IIIA-N layer is deposited on the substrate, and a first essentially void-free Group IIIA-N layer is then deposited on the first voided Group IIIA-N layer. A first high roughness Group IIIA-N layer is deposited on the first essentially void-free Group IIIA-N layer, and a first essentially smooth Group IIIA-N layer is deposited on the first high roughness Group IIIA-N layer. At least one Group IIIA-N surface layer is then deposited on the first essentially smooth Group IIIA-N layer.
Abstract:
A process of forming an integrated circuit containing a piezoelectric thin film by forming a sol gel layer, drying in at least 1 percent relative humidity, baking starting between 100 and 225° C. increasing to between 275 and 425° C. over at least 2 minutes, and forming the piezoelectric thin film by baking the sol gel layer between 250 and 350° C. for at least 20 seconds, annealing between 650 and 750° C. for at least 60 seconds in an oxidizing ambient pressure between 700 and 1000 torr and a flow rate between 3 and 7 slm, followed by annealing between 650 and 750° C. for at least 20 seconds in a pressure between 4 and 10 torr and a flow rate of at least 5 slm, followed by ramping down the temperature.
Abstract:
Use of a non-solvent for the edge bead removal of spin-coated PZT or PLZT thinfilms, eliminates swelling of the exposed edges of the PZT or PLZT thinfilms and eliminates delamination and formation of particle defects in subsequent bake and anneal steps.
Abstract:
A method of fabricating a multi-layer epitaxial buffer layer stack for transistors includes depositing a buffer stack on a substrate. A first voided Group IIIA-N layer is deposited on the substrate, and a first essentially void-free Group IIIA-N layer is then deposited on the first voided Group IIIA-N layer. A first high roughness Group IIIA-N layer is deposited on the first essentially void-free Group IIIA-N layer, and a first essentially smooth Group IIIA-N layer is deposited on the first high roughness Group IIIA-N layer. At least one Group IIIA-N surface layer is then deposited on the first essentially smooth Group IIIA-N layer.
Abstract:
A semiconductor device may be formed by forming a silicon-containing gate dielectric layer over a semiconductor layer. A gate metal layer is formed over the gate dielectric layer; the gate metal layer includes 2 atomic percent to 10 atomic percent silicon during formation. The gate metal layer is patterned to form a metal gate. Source and drain contact holes are subsequently formed, and contact metal is formed and patterned in the contact holes. A subsequent contact anneal heats the contact metal and gate for at least 30 seconds at a temperature of at least 750° C.